Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).
Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).
Zhou, H. et al. Perfect single-sided radiation and absorption without mirrors. Optica 3, 1079–1086 (2016).
Melati, D. et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 10, 4775 (2019).
Dregely, D. et al. 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2, 267 (2011).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Li, S. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).
Moritake, Y. & Notomi, M. Switchable unidirectional radiation from Huygens dipole formed at an exceptional point in non-Hermitian plasmonic systems. ACS Photon. 10, 667–672 (2023).
Yin, X., Jin, J., Soljačić, M. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).
Kim, N. et al. Highly angle-sensitive and efficient optical metasurfaces with broken mirror symmetry. Nanophotonics 12, 2347–2358 (2023).
Yin, X., Inoue, T., Peng, C. & Noda, S. Topological unidirectional guided resonances emerged from interband coupling. Phys. Rev. Lett. 130, 056401 (2023).
Wade, M. T. et al. 75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process. In Proc. 2015 IEEE Optical Interconnects Conference 46–47 (IEEE, 2015).
Lee, K. et al. Synthetic topological nodal phase in bilayer resonant gratings. Phys. Rev. Lett. 128, 053002 (2022).
Lee, K. Y., Yoo, K. W., Monticone, F. & Yoon, J. W. Dirac bilayer metasurfaces as an inverse Gires-Tournois etalon. Preprint at https://arxiv.org/abs/2311.08766 (2023).
Nguyen, D.-H.-M. et al. Reconfigurable topological lasing through Thouless pumping in bilayer photonic crystal. Preprint at https://arxiv.org/abs/2111.02843v5 (2021).
Nguyen, D.-H.-M., Devescovi, C., Nguyen, D. X., Nguyen, H. S. & Bercioux, D. Fermi arc reconstruction in synthetic photonic lattice. Phys. Rev. Lett. 131, 053602 (2023).
Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystals: almost-perfect flatbands and unconventional localization. Phys. Rev. Res. 4, L032031 (2022).
Nguyen, H. S. et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones. Phys. Rev. Lett. 120, 066102 (2018).
Zeng, Y., Hu, G., Liu, K., Tang, Z. & Qiu, C. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett. 127, 176101 (2021).
Letartre, X. et al. Analytical non-Hermitian description of photonic crystals with arbitrary lateral and transverse symmetry. Phys. Rev. A 106, 033510 (2022).
Hwang, J. et al. Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating. Sci. Rep. 8, 14787 (2018).
Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).
Xue, H., Wang, Q., Zhang, B. & Chong, Y. D. Non-Hermitian Dirac cones. Phys. Rev. Lett. 124, 236403 (2020).
Kazarinov, R. & Henry, C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 21, 144–150 (1985).
Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. 20, 569–572 (2003).
Hsu, C. et al. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 7, 1900239 (2019).
Lee, S. W., Lee, J. S., Choi, W. H. & Gong, S. Ultrathin WS2 polariton waveguide for efficient light guiding. Adv. Opt. Mater. 11, 2300069 (2023).
Lee, S. W., Lee, J. S., Choi, W. H., Choi, D. & Gong, S. Ultra-compact exciton polariton modulator based on van der Waals semiconductors. Nat. Commun. 15, 2331 (2024).
Cho, H., Shin, D., Sung, J. & Gong, S. Ultra-thin grating coupler for guided exciton-polaritons in WS2 multilayers. Nanophotonics 12, 2563 (2023).
Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
Zatko, V. et al. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. ACS Nano 15, 7279–7289 (2021).
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 674 (1946).
Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics 11, 232–236 (2017).
Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, 52 (2021).
Andrzejewski, D. et al. Flexible Large-Area Light-Emitting Devices Based on WS2 Monolayers. Adv. Opt. Mater. 8, 20 (2020).
Liu, H. et al. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).
Guarneri, L. et al. Temperature-dependent excitonic light manipulation with atomically thin optical elements. Nano Lett. 24, 6240–6246 (2024).
Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light.: Sci. Appl. 9, 190 (2020).
Wang, H. et al. Ultralow-loss optical interconnect enabled by topological unidirectional guided resonance. Sci. Adv. 10, 12 (2024).
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).