Tumor microenvironment remodeling with a telomere-targeting agent and its cooperative antitumor effects with a nanovaccine | Journal of Nanobiotechnology


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Sugarman ET, Zhang G, Shay JW. In perspective: an update on telomere targeting in cancer. Mol Carcinog. 2019;58(9):1581–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizukoshi E, Kaneko S. Telomerase-targeted cancer immunotherapy. Int J Mol Sci. 2019;20(8):1823.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man RJ, Chen LW, Zhu HL. Telomerase inhibitors: a patent review (2010–2015). Expert Opin Ther Pat. 2016;26(6):679–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mender I, LaRanger R, Luitel K, Peyton M, Girard L, Lai TP, Batten K, Cornelius C, Dalvi MP, Ramirez M, Du W, Wu LF, Altschuler SJ, Brekken R, Martinez ED, Minna JD, Wright WE, Shay JW. Telomerase-mediated strategy for overcoming non-small cell lung cancer targeted therapy and chemotherapy resistance. Neoplasia. 2018;20(8):826–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta S, Sobo M, Lee K, Senthil Kumar S, White AR, Mender I, Fuller C, Chow LML, Fouladi M, Shay JW, Drissi R. Induced telomere damage to treat telomerase expressing therapy-resistant pediatric brain tumors. Mol Cancer Ther. 2018;17(7):1504–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang G, Wu LW, Mender I, Barzily-Rokni M, Hammond MR, Ope O, Cheng C, Vasilopoulos T, Randell S, Sadek N, Beroard A, Xiao M, Tian T, Tan J, Saeed U, Sugarman E, Krepler C, Brafford P, Sproesser K, Murugan S, Somasundaram R, Garman B, Wubbenhorst B, Woo J, Yin X, Liu Q, Frederick DT, Miao B, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Kwong LN, Amaravadi RK, Lu Y, Boland GM, Wei Z, Nathanson K, Herbig U, Mills GB, Flaherty KT, Herlyn M, Shay JW. Induction of telomere dysfunction prolongs disease control of therapy-resistant melanoma. Clinical Cancer Res Off J Am Assoc Cancer Res. 2018;24(19):4771–84.

    Article 
    CAS 

    Google Scholar
     

  • Yu S, Wei S, Savani M, Lin X, Du K, Mender I, Siteni S, Vasilopoulos T, Reitman ZJ, Ku Y, Wu D, Liu H, Tian M, Chen Y, Labrie M, Charbonneau CM, Sugarman E, Bowie M, Hariharan S, Waitkus M, Jiang W, McLendon RE, Pan E, Khasraw M, Walsh KM, Lu Y, Herlyn M, Mills G, Herbig U, Wei Z, Keir ST, Flaherty K, Liu L, Wu K, Shay JW, Abdullah K, Zhang G, Ashley DM. A modified nucleoside 6-Thio-2’-deoxyguanosine exhibits antitumor activity in gliomas. Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(24):6800–14.

    Article 
    CAS 

    Google Scholar
     

  • Mender I, Gryaznov S, Dikmen ZG, Wright WE, Shay JW. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2’-deoxyguanosine. Cancer Discov. 2015;5(1):82–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mender I, Gryaznov S, Shay JW. A novel telomerase substrate precursor rapidly induces telomere dysfunction in telomerase positive cancer cells but not telomerase silent normal cells. Oncoscience. 2015;2(8):693–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mender I, Zhang A, Ren Z, Han C, Deng Y, Siteni S, Li H, Zhu J, Vemula A, Shay JW, Fu YX. Telomere stress potentiates STING-dependent anti-tumor immunity. Cancer Cell. 2020;38(3):400-411.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23(4):487–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci. 2022;9(22):e2201734.

    Article 

    Google Scholar
     

  • Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, Kastritis E, Terpos E, Dimopoulos MA, Kalbacher H, Livaniou E, Christodoulou MI, Tsitsilonis OE. Immunogenic cell death, DAMPs and Prothymosin α as a putative anticancer immune response biomarker. Cells. 2022;11(9):1415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatsuno K, Yamazaki T, Hanlon D, Han P, Robinson E, Sobolev O, Yurter A, Rivera-Molina F, Arshad N, Edelson RL, Galluzzi L. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis. 2019;10(8):578.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14(12):2994–3006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells. 2021;10(4):930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge JC, Uecker D. Nano-pulse stimulation is a physical modality that can trigger immunogenic tumor cell death. J Immunother Cancer. 2017;5:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. Nanoscale. 2021;13(41):17218–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A, Sigismund S, Ravenda PS, Bonaldi T, Zampino MG, Cancelliere C, Di Fiore PP, Bardelli A, Penna G, Rescigno M. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med. 2016;22(6):624–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Métivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202(12):1691–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Duan B, Bai J, Luo Y, Ma Y. Telomerase inhibitor 6-Thio-2’-deoxyguanosine induces immunogenic cell death in tumour cells. Chin J Cell Biol. 2024;46(2):214–25.


    Google Scholar
     

  • Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother CII. 2017;66(4):503–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(18):6713–21.

    Article 
    CAS 

    Google Scholar
     

  • Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F, Wang J, Yue H, Gao X, Jia R, Wei W, Ma G. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv Mater. 2020;32(47):2002085.

    Article 
    CAS 

    Google Scholar
     

  • Hua L, Yang Z, Li W, Zhang Q, Ren Z, Ye C, Zheng X, Li D, Long Q, Bai H, Sun W, Yang X, Zheng P, He J, Chen Y, Huang W, Ma Y. A Novel Immunomodulator delivery platform based on bacterial biomimetic vesicles for enhanced antitumor immunity. Advanced Mater. 2021;33(43):2103923.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Zhang Q, Bai H, Huang W, Shu C, Ye C, Sun W, Ma Y. Self-assembled nanofibers elicit potent HPV16 E7-specific cellular immunity and abolish established TC-1 graft tumor. Int J Nanomed. 2019;14:8209–19.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Zhu W, Ye C, Sun W, Xie H, Yang X, Zhang Q, Ma Y. Local mucosal immunization of self-assembled nanofibers elicits robust antitumor effects in an orthotopic model of mouse genital tumors. Nanoscale. 2020;12(5):3076–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Shi Y, Wang Q, Qi T, Fu X, Gu Z, Zhang Y, Zhai G, Zhao X, Sun Q, Lin G. Enzyme responsiveness enhances the specificity and effectiveness of nanoparticles for the treatment of B16F10 melanoma. J Controll Release Off J Controlled Release Soc. 2019;316:208–22.

    Article 
    CAS 

    Google Scholar
     

  • Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discovery. 2006;5(7):577–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer. 2008;8(3):167–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gianni T, Leoni V, Sanapo M, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G, Vannini A. Genotype of immunologically hot or cold tumors determines the antitumor immune response and efficacy by fully virulent retargeted oHSV. Viruses. 2021;13(9):1747.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni G, Yang X, Li J, Wu X, Liu Y, Li H, Chen S, Fogarty CE, Frazer IH, Chen G, Liu X, Wang T. Intratumoral injection of caerin 1.1 and 1.9 peptides increases the efficacy of vaccinated TC-1 tumor-bearing mice with PD-1 blockade by modulating macrophage heterogeneity and the activation of CD8(+) T cells in the tumor microenvironment. Clin Trans Immunol. 2021;10(8):1335.

    Article 

    Google Scholar
     

  • Noman MZ, Parpal S, Van Moer K, Xiao M, Yu Y, Viklund J, De Milito A, Hasmim M, Andersson M, Amaravadi RK, Martinsson J, Berchem G, Janji B. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci Adv. 2020;6(18):eaax7881.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. PLoS ONE. 2011;6(8): e24226.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27(4):462–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J, Kim JH, Lee SW, Gho YS. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8(1):626.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res. 2014;31(6):1377–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Yan S, Zhang L, Zhao B, Zhu C, Deng G, Liu J. A self-degrading and NIR-II emissive type I/II photosensitizer with synergistic photodynamic and photothermal properties for antibacterial and anticancer. Sens Actuators B Chem. 2024;405: 135346.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered bacterial biomimetic vesicles reprogram tumor-associated macrophages and remodel tumor microenvironment to promote innate and adaptive antitumor immune responses. ACS Nano. 2024;18(9):6863–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Gu Z, Fan Y, Zhai G, Zhao X, Sun Q, Shi Y, Lin G. Inhibition of the adenosinergic pathway: the indispensable part of oncological therapy in the future. Purinergic Signal. 2019;15(1):53–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • THIO sequenced with cemiplimab in advanced NSCLC. https://tinyurl.com/mr3rjuw3 (Accessed 5 Feb, 2025).

  • MAIA Biotechnology announces positive efficacy updates for phase 2 THIO-101 trial in advanced non-small cell lung cancer. https://tinyurl.com/ypuvs8e2 (Accessed 5 Feb, 2025).

  • Zhang Q, Huang W, Yuan M, Li W, Hua L, Yang Z, Gao F, Li S, Ye C, Chen Y, He J, Sun W, Yang X, Bai H, Ma Y. Employing ATP as a new adjuvant promotes the induction of robust antitumor cellular immunity by a PLGA nanoparticle vaccine. ACS Appl Mater Interf. 2020;12(49):54399–414.

    Article 
    CAS 

    Google Scholar
     

  • Weber R, Riester Z, Hüser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer. 2020;8(2):000949.

    Article 

    Google Scholar
     

  • Li T, Li X, Zamani A, Wang W, Lee CN, Li M, Luo G, Eiler E, Sun H, Ghosh S, Jin J, Murali R, Ruan Q, Shi W, Chen YH. c-Rel Is a myeloid checkpoint for cancer immunotherapy. Nature cancer. 2020;1(5):507–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Hu Y, Zhang Q, Hua L, Yang Z, Ren Z, Zheng X, Huang W, Ma Y. Development of drug-resistant Klebsiella pneumoniae vaccine via novel vesicle production technology. ACS Appl Mater Interf. 2021;13(28):32703–15.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, He J, Yang Z, Fu Y, Yang Y, Li W, Ding Y, Yang X, Ma Y. Neoantigen-based nanovaccine in combination with immune checkpoint inhibitors abolish postsurgical tumor recurrence and metastasis. Small. 2023;19(50): e2302922.

    Article 
    PubMed 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *