Secretome enriched with small extracellular vesicles derived from human gingiva-derived mesenchymal stem cells enhances rat tongue muscle regeneration | Journal of Nanobiotechnology


  • Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 2022;29:1515–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7:92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Sun Y, Xu W, Chang F, Wang Y, Ding J. Mesenchymal stem cells-involved strategies for rheumatoid arthritis therapy. Adv Sci Weinh. 2024. https://doi.org/10.1002/advs.202305116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal stromal cells derived from dental tissues: immunomodulatory properties and clinical potential. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25041986.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal stem cells in the pathogenesis and therapy of autoimmune and autoinflammatory diseases. Int J Mol Sci. 2023;24:16040.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Garza LE, Barrera-Barrera SA, Barrera-Saldaña HA. Mesenchymal stem cell therapies approved by regulatory agencies around the world. Pharmaceuticals (Basel). 2023;16:1334.

    Article 
    PubMed 

    Google Scholar
     

  • Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, et al. The immunoregulatory and regenerative potential of activated human stem cell secretome mitigates acute-on-chronic liver failure in a rat model. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25042073.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolinská V, Boháč M, Danišovič Ľ. Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine. Physiol Res. 2023;72:S233-s245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi J. Next steps in regenerative medicine. Cell Stem Cell. 2023;30:509–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater. 2023;29:16–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther. 2023;14:66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Cheng K. Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng. 2023. https://doi.org/10.1038/s44222-023-00064-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannasi C, Della Morte E, Cadelano F, Valenza A, Casati S, Dei Cas M, Niada S, Brini AT. Boosting the therapeutic potential of cell secretome against osteoarthritis: comparison of cytokine-based priming strategies. Biomed Pharmacother. 2024;170: 115970.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine – a comprehensive review. Front Immunol. 2021;12: 667221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tolouei AE, Oruji F, Tehrani S, Rezaei S, Mozaffari A, Jahri M, Nasiri K. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep. 2023;50:10461–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, Shanti RM, Zhang Q, Cannady SB, O’Malley BW Jr, Le AD. A gingiva-derived mesenchymal stem cell-laden porcine small intestinal submucosa extracellular matrix construct promotes myomucosal regeneration of the tongue. Tissue Eng Part A. 2017;23:301–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Shi S, Xu Q, Zhang Q, Shanti RM, Le AD. SIS-ECM laden with GMSC-derived exosomes promote taste bud regeneration. J Dent Res. 2019;98:225–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Nguyen PD, Shi S, Burrell JC, Xu Q, Cullen KD, Le AD. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats. Mol Neurobiol. 2018;55:6965–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Nguyen P, Burrell JC, Zeng J, Shi S, Shanti RM, Kulischak G, Cullen DK, Le AD. Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med. 2021;6:59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schepici G, Gugliandolo A, Mazzon E. Serum-free cultures: could they be a future direction to improve neuronal differentiation of mesenchymal stromal cells? Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23126391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolits I, Nebel S, Egger D, Kreß S, Kasper C. Towards physiologic culture approaches to improve standard cultivation of mesenchymal stem cells. Cells. 2021;10:886.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan F, Qian C, Tang K, Abd-Allah SM, Jing N. Inhibition of transforming growth factor β (TGF-β) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. J Biol Chem. 2015;290:4500–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS ONE. 2014;9: e89678.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao Y, Yang Y, Yang Z, Wang L, Wang SQ, Zhao Y. Robust small molecule-aided cardiac reprogramming systems selective to cardiac fibroblasts. IScience. 2023;26: 108466.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winston TS, Suddhapas K, Wang C, Ramos R, Soman P, Ma Z. Serum-free manufacturing of mesenchymal stem cell tissue rings using human-induced pluripotent stem cells. Stem Cells Int. 2019;2019:5654324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi A, Heinayati A, Bao D, Liu H, Ding X, Tong X, Wang L, Wang B, Qin H. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther. 2019;10:172.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216-w221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong L, Zieren RC, Horie K, Kim CJ, Mallick E, Jing Y, Feng M, Kuczler MD, Green J, Amend SR, et al. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. J Extracell Vesicles. 2020;10: e12044.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Wu Y, Yang D, Neo SH, Kadir ND, Goh D, Tan JX, Denslin V, Lee EH, Yang Z. Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles. Bioact Mater. 2023;27:98–112.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papait A, Ragni E, Cargnoni A, Vertua E, Romele P, Masserdotti A, Perucca Orfei C, Signoroni PB, Magatti M, Silini AR, et al. Comparison of EV-free fraction, EVs, and total secretome of amniotic mesenchymal stromal cells for their immunomodulatory potential: a translational perspective. Front Immunol. 2022;13: 960909.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veerman RE, Teeuwen L, Czarnewski P, Güclüler Akpinar G, Sandberg A, Cao X, Pernemalm M, Orre LM, Gabrielsson S, Eldh M. Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles. 2021;10: e12128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E. Extracellular vesicle measurements with nanoparticle tracking analysis – an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles. 2019;8:1596016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajkowska G, Miguel-Hidalgo JJ. Glial pathology in major depressive disorder: an approach to investigate the coverage of blood vessels by astrocyte endfeet in human postmortem brain. Methods Mol Biol. 2019;1938:247–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis. 2021;12:240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells. Cells. 2019. https://doi.org/10.3390/cells8091031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia TT, Hu R, Shao CJ, Feng Y, Yang XL, Xie YP, Shi JX, Li JS, Li XM. Stanniocalcin-1 secreted by human umbilical mesenchymal stem cells regulates interleukin-10 expression via the PI3K/AKT/mTOR pathway in alveolar macrophages. Cytokine. 2023;162: 156114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, Mroz L, McVerry BJ, Ellis BM, Kaminski N, Rojas M. Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels. Stem Cells Transl Med. 2013;2:884–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang Y, Hong Y, Mai C, Yang H, Wu Z, Gao X, Zeng W, Deng X, Liu B, Zhang Y, et al. Transcriptome analysis reveals therapeutic potential of NAMPT in protecting against abdominal aortic aneurysm in human and mouse. Bioact Mater. 2024;34:17–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Su Q, Li J, Xue C, Zhu J, Cai Q, Huang J, Ji S, Cheng B, Ge H. NAMPT encapsulated by extracellular vesicles from young adipose-derived mesenchymal stem cells treated tendinopathy in a “One-Stone-Two-Birds” manner. J Nanobiotechnology. 2023;21:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Műzes G, Sipos F. Mesenchymal stem cell-derived secretome: a potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells. 2022. https://doi.org/10.3390/cells11152300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene. 2023;858: 147172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol. 2023;14:1274816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto A, Kokabu S, Dusadeemeelap C, Kawaue H, Matsubara T, Tominaga K, Addison WN. Tongue muscle for the analysis of head muscle regeneration dynamics. J Dent Res. 2022;101:962–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long R, Wang S. Exosomes from preconditioned mesenchymal stem cells: tissue repair and regeneration. Regen Ther. 2024;25:355–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal stem cell conditioned medium modulates inflammation in tenocytes: complete conditioned medium has superior therapeutic efficacy than its extracellular vesicle fraction. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241310857.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, et al. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther. 2019;10:116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannasi C, Niada S, Magagnotti C, Ragni E, Andolfo A, Brini AT. Comparison of two ASC-derived therapeutics in an in vitro OA model: secretome versus extracellular vesicles. Stem Cell Res Ther. 2020;11:1–15.

    Article 

    Google Scholar
     

  • González-Cubero E, González-Fernández ML, Olivera ER, Villar-Suárez V. Extracellular vesicle and soluble fractions of adipose tissue-derived mesenchymal stem cells secretome induce inflammatory cytokines modulation in an in vitro model of discogenic pain. Spine J. 2022;22:1222–34.

    Article 
    PubMed 

    Google Scholar
     

  • Ragni E, Perucca Orfei C, de Girolamo L. Secreted factors and extracellular vesicles account for the immunomodulatory and tissue regenerative properties of bone-marrow-derived mesenchymal stromal cells for osteoarthritis. Cells. 2022. https://doi.org/10.3390/cells11213501.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: a narrative review. Heliyon. 2023;9: e18120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pincela Lins PM, Pirlet E, Szymonik M, Bronckaers A, Nelissen I. Manufacture of extracellular vesicles derived from mesenchymal stromal cells. Trends Biotechnol. 2023;41:965–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noor Azlan NAB, Vitus V, Nor Rashid N, Nordin F, Tye GJ, Zaman WK. Human mesenchymal stem cell secretomes: Factors affecting profiling and challenges in clinical application. Cell Tissue Res. 2024;395:227–50.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X, Liu F, Zhang L. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther. 2023;14:381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn CM, Kameishi S, Grainger DW, Okano T. Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater. 2021;133:114–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Y, Xu C, Cheng W, Zhao Y, Sui L, Zhao Y. Pretreated mesenchymal stem cells and their secretome: enhanced immunotherapeutic strategies. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isaac J, Nassif A, Asselin A, Taïhi I, Fohrer-Ting H, Klein C, Gogly B, Berdal A, Robert B, Fournier BP. Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing. Biomaterials. 2018;172:41–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 marks neural crest derived multipotent oral stromal stem cells. Stem Cells. 2016;34:720–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther. 2022;13:263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: the emerging role of chemokine cooperativity. Stem Cells. 2021;39:1145–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peshkova M, Korneev A, Suleimanov S, Vlasova II, Svistunov A, Kosheleva N, Timashev P. MSCs’ conditioned media cytokine and growth factor profiles and their impact on macrophage polarization. Stem Cell Res Ther. 2023;14:142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leñero C, Kaplan LD, Best TM, Kouroupis D. CD146+ Endometrial-derived mesenchymal stem/stromal cell subpopulation possesses exosomal secretomes with strong immunomodulatory miRNA attributes. Cells. 2022. https://doi.org/10.3390/cells11244002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Z, Lin L, Fan Y, Huselstein C, De Isla N, He X, Chen Y, Li Y. Secretome of mesenchymal stem cells from consecutive hypoxic cultures promotes resolution of lung inflammation by reprogramming anti-inflammatory macrophages. Int J Mol Sci. 2022;23:4333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holthaus M, Santhakumar N, Wahlers T, Paunel-Görgülü A. The secretome of preconditioned mesenchymal stem cells drives polarization and reprogramming of M2a macrophages toward an IL-10-producing phenotype. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23084104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu N, Bo Q, Shao R, Liang J, Zhai Y, Yang S, Wang F, Sun X. Chitinase-3-Like-1 promotes M2 macrophage differentiation and induces choroidal neovascularization in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2019;60:4596–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, Wee WR, Prockop DJ. Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells. 2014;32:1553–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. BioFactors. 2020;46:263–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KC, Lin HC, Huang YH, Hung SC. Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease. J Hepatol. 2015;63:1405–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukada SI, Uezumi A. Roles and heterogeneity of mesenchymal progenitors in muscle homeostasis, hypertrophy, and disease. Stem Cells. 2023;41:552–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther. 2020;15:285–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandonà M, Esposito F, Cargnoni A, Silini A, Romele P, Parolini O, Saccone V. Amniotic membrane-derived stromal cells release extracellular vesicles that favor regeneration of dystrophic skeletal muscles. Int J Mol Sci. 2023;24:12457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDonald AF, Gross AJ, Jones BJ, Dhar MS. Muscle regeneration of the tongue: a review of current clinical and regenerative research strategies. Tissue Eng Part B Rev. 2022;28:1022–34.

    Article 
    PubMed 

    Google Scholar
     

  • da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a tool to treat neurological conditions: are we ready? Int J Mol Sci. 2023. https://doi.org/10.3390/ijms242216544.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgson-Garms M, Moore MJ, Martino MM, Kelly K, Frith JE. Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing. NPJ Regen Med. 2025;10:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang M, Jordan V, Blenkiron C, Chamley LW. Biodistribution of extracellular vesicles following administration into animals: a systematic review. J Extracell Vesicles. 2021;10: e12085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular vesicles-in-hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater. 2025;44:283–318.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhang D, Yu Y, Wang L, Zhao M. Umbilical cord-derived mesenchymal stem cell secretome promotes skin regeneration and rejuvenation: from mechanism to therapeutics. Cell Prolif. 2024;57: e13586.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, et al. International society for cellular therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 2016;18:151–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13: e12404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *