Nano-formulations in disease therapy: designs, advances, challenges, and future directions | Journal of Nanobiotechnology


  • Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016;128–129:99–112.

    Article 
    PubMed 

    Google Scholar
     

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdoğar N, Akkın S, Bilensoy E. Nanocapsules for drug delivery: an updated review of the last decade. Recent Pat Drug Deliv Formul. 2018;12(4):252–66.

    Article 
    PubMed 

    Google Scholar
     

  • Miguel RDA, Hirata AS, Jimenez PC, et al. Beyond formulation: contributions of nanotechnology for translation of anticancer natural products into new drugs. Pharmaceutics. 2022;14(8):1772.

    Article 

    Google Scholar
     

  • Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J. 1971;124(5):58p.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone NR, Bicanic T, Salim R, et al. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care. 1996;7(2):55–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108(2):241–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfayez M, Kantarjian H, Kadia T, et al. CPX-351 (vyxeos) in AML. Leuk Lymphoma. 2020;61(2):288–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duggan S. Caplacizumab: first global approval. Drugs. 2018;78(15):1639–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teo SP. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2022;35(6):947–51.

    Article 
    PubMed 

    Google Scholar
     

  • Hargreaves R, Ferreira JC, Hughes D, et al. Development of aprepitant, the first neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Ann NY Acad Sci. 2011;1222:40–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan O, Chaudary N. The use of Amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Devel Ther. 2020;14:2287–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean AQ, Luo S, Twomey JD, et al. Targeting cancer with antibody-drug conjugates: promises and challenges. MAbs. 2021;13(1):1951427.

    Article 
    PubMed 

    Google Scholar
     

  • Nelemans LC, Gurevich L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials. 2020;13(2):1.

    Article 

    Google Scholar
     

  • Alqosaibi AI. Nanocarriers for anticancer drugs: challenges and perspectives. Saudi J Biol Sci. 2022;29(6): 103298.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghanbari-Movahed M, Kaceli T, Mondal A, et al. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: a systematic review. Biomedicines. 2021;9(5):1.

    Article 

    Google Scholar
     

  • Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol. 2005;6(1):17–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elzoghby AO, Abdelmoneem MA, Hassanin IA, et al. Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials. 2020;263: 120355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao D, Jiang M, Liu Z, et al. Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for antiglioblastoma therapy. Mol Pharm. 2014;11(1):90–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godlewska M, Majkowska-Pilip A, Stachurska A, et al. Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases. Electrochim Acta. 2019;299:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Wei D, Sun Y, Zhu H, et al. Stimuli-responsive polymer-based nanosystems for cancer theranostics. ACS Nano. 2023;17(23):23223–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Song X, Zhang Y, et al. Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Biomater Sci. 2020;8(7):1875–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Hong W, Ren W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021;6(1):225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, et al. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23): e1706759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han X, Shen S, Fan Q, et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci Adv. 2019;5(10):eaaw6870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano. 2016;10(11):10049–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong J, Wu M, Chen J, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer. ACS Nano. 2021;15(12):19756–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kao CY, Papoutsakis ET. Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr Opin Biotechnol. 2019;60:89–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev. 2020;156:214–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Li A, Jiang L, et al. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromol. 2021;22(8):3149–67.

    Article 
    CAS 

    Google Scholar
     

  • Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials. 2018;160:124–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng S, Xu C, Jin Y, et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer. Adv Sci. 2020;7(7):1903301.

    Article 
    CAS 

    Google Scholar
     

  • Mukker JK, Singh RSP. Pharmacokinetic modeling in nano-formulations: concept, implementation and challenges. Curr Pharm Des. 2018;24(43):5175–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chopra A. Cy5.5-Conjugated glycol chitosan-5β-cholanic acid nanoparticles. In Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2004

  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belyaev IB, Griaznova OY, Yaremenko AV, et al. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev. 2025;219: 115550.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Hu JJ, Yoon J. Cell membrane as a promising therapeutic target: from materials design to biomedical applications. Angew Chem Int Ed Engl. 2024;63(18): e202400249.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou D, Wu Z, Yi X, et al. Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions. Proc Natl Acad Sci USA. 2023;120(1): e2214757120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Kröger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale. 2015;7(40):16631–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parakhonskiy B, Zyuzin MV, Yashchenok A, et al. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol. 2015;13:53.

    Article 

    Google Scholar
     

  • Dong N, Liu Z, He H, et al. “Hook&Loop” multivalent interactions based on disk-shaped nanoparticles strengthen active targeting. J Control Release. 2023;354:279–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen LNM, Lin ZP, Sindhwani S, et al. The exit of nanoparticles from solid tumours. Nat Mater. 2023;22(10):1261–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhou Y, Lyu Q, et al. Targeted protein delivery based on stimuli-triggered nanomedicine. Exploration. 2024;4(3):20230025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Fan X, Zhang Y, et al. Cooperative coordination-mediated multi-component self-assembly of “all-in-one” nanospike theranostic nano-platform for MRI-guided synergistic therapy against breast cancer. Acta Pharm Sin B. 2022;12(9):3710–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng K, Luo Z, Tan L, et al. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev. 2020.

  • Li J, Jia X. Photo-controlled self-assembly of nanoparticles: a promising strategy for development of novel structures. Nanomaterials. 2023;13:18.

    Article 

    Google Scholar
     

  • Cheng S, Grest GS. Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation. ACS Macro Lett. 2016;5(6):694–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal M, Zafar N, Fessi H, et al. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater. 2017;6(23):1.

    Article 

    Google Scholar
     

  • Devalapally H, Shenoy D, Little S, et al. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol. 2007;59(4):477–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cornu R, Béduneau A, Martin H. Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology. 2020;430: 152344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Önal Acet B, Gül D, Stauber RH, et al. A review for uncovering the “protein-nanoparticle alliance”: implications of the protein corona for biomedical applications. Nanomaterials. 2024;14:10.

    Article 

    Google Scholar
     

  • Chen F, Wang G, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12(4):387–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fröhlich E. Cellular elimination of nanoparticles. Environ Toxicol Pharmacol. 2016;46:90–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YN, Poon W, Tavares AJ, et al. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brand W, Noorlander CW, Giannakou C, et al. Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomedicine. 2017;12:6107–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Mao L, Jiang Y, et al. Revealing the In Situ behavior of aggregation-induced emission nanoparticles and their biometabolic effects via mass spectrometry imaging. ACS Nano. 2023;17(5):4463–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portilho FL, Helal-Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1080–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P, Wang D, Hu J, et al. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev. 2022;189: 114447.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Pan Y, Chen W, et al. Nanodrugs targeting key factors of ferroptosis regulation for enhanced treatment of osteoarthritis. Adv Sci. 2025;12(11): e2412817.

    Article 

    Google Scholar
     

  • The L. GLOBOCAN 2018: counting the toll of cancer. Lancet. 2018;392(10152):985.

    Article 

    Google Scholar
     

  • Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17(5):286–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romanini A, Tanganelli L, Carnino F, et al. First-line chemotherapy with epidoxorubicin, paclitaxel, and carboplatin for the treatment of advanced epithelial ovarian cancer patients. Gynecol Oncol. 2003;89(3):354–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014;347(2):159–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janjic A, Cayoren M, Akduman I, et al. SAFE: a novel microwave imaging system design for breast cancer screening and early detection-clinical evaluation. Diagnostics. 2021;11:3.

    Article 

    Google Scholar
     

  • Kuai R, Li D, Chen YE, et al. High-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano. 2016;10(3):3015–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lin L, Liu R, et al. Anisotropy in shape and ligand‐conjugation of hybrid nanoparticulates manipulates the mode of bio–nano interaction and its outcome. 2017;27(31):1700406.

  • Zheng G, Chen J, Li H, et al. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA. 2005;102(49):17757–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bariwal J, Ma H, Altenberg GA, et al. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev. 2022;51(5):1702–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng H, Wang M, Wu C, et al. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in lung adenocarcinoma: a STROBE compliant article. Medicine. 2018;97(13): e0203.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Kuai R, Yuan W, et al. Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine. 2017;13(6):1869–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Jarzyna PA, van Tilborg GA, et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. Faseb J. 2010;24(6):1689–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Yu H, Ding D, et al. Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radical Biol Med. 2019;130:71–81.

    Article 
    CAS 

    Google Scholar
     

  • Gao P, Mei C, He L, et al. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Deliv. 2018;25(1):1811–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiwari N, Gheldof A, Tatari M, et al. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22(3):194–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang HL, Mohan CD, Shanmugam MK, et al. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 2023;43(4):1141–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif. 2016;49(6):678–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwalla P, Mukherjee S, Sreedhar B, et al. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine. 2016;11(19):2529–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baghi N, Bakhshinejad B, Keshavarz R, et al. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene. 2018;670:55–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari M, Ray L, Purohit MP, et al. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur J Pharm Biopharm. 2017;117:346–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari M, Purohit MP, Patnaik S, et al. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. Eur J Pharm Biopharm. 2018;130:185–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Ji X, Liu Z, et al. Bimetallic nanoplatforms for prostate cancer treatment by interfering cellular communication. J Am Chem Soc. 2024;146(32):22530–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muggia F, Kudlowitz D. Novel taxanes. Anticancer Drugs. 2014;25(5):593–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Peng J, Zhao Q, et al. A novel MPEG-PDLLA-PLL copolymer for docetaxel delivery in breast cancer therapy. Theranostics. 2017;7(10):2652–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao W, Suby N, Xiao K, et al. Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J Control Release. 2017;264:169–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He H, Liu L, Morin EE, et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res. 2019;52(9):2445–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev. 2018;130:3–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, van Steenbergen MJ, Beztsinna N, et al. Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. J Control Release. 2020;328:970–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Deng Y, Zheng Z, et al. Hsp90 inhibitor STA9090 sensitizes hepatocellular carcinoma to hyperthermia-induced DNA damage by suppressing DNA-PKcs protein stability and mRNA transcription. Mol Cancer Ther. 2021;20(10):1880–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia L, Yang H, Liu Y, et al. Targeted delivery of HSP90 inhibitors for efficient therapy of CD44-positive acute myeloid leukemia and solid tumor-colon cancer. J Nanobiotechnol. 2024;22(1):198.

    Article 
    CAS 

    Google Scholar
     

  • Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers – an efficient biomimetic platform for targeted therapy. J Control Release. 2020;327:546–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Lu J, Yan C, et al. Tumor cell membrane-coated biomimetic nanoplatform for homologous targeted therapy of colorectal carcinoma. Int J Polym Mater. 2019:1–10.

  • Baxevanis CN, Perez SA, Papamichail M. Cancer immunotherapy. Crit Rev Clin Lab Sci. 2009;46(4):167–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan S, Luo Z, Li Z, et al. Improving cancer immunotherapy outcomes using biomaterials. Angew Chem Int Ed Engl. 2020;59(40):17332–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21(3):e168–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020;17(4):251–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Xu H, Weng L, et al. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol. 2022;13:1041073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.

    Article 
    PubMed 

    Google Scholar
     

  • Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11(11):5365–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 2020;1248:201–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanaei MJ, Pourbagheri-Sigaroodi A, Kaveh V, et al. The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: recent advances and opportunities. Crit Rev Oncol Hematol. 2021;157: 103160.

    Article 
    PubMed 

    Google Scholar
     

  • Kapadia CH, Perry JL, Tian S, et al. Nanoparticulate immunotherapy for cancer. J Control Release. 2015;219:167–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • André T, Lonardi S, Wong KYM, et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol. 2022;33(10):1052–60.

    Article 
    PubMed 

    Google Scholar
     

  • Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic – a new approach to cancer therapy. Nat Rev Clin Oncol. 2023;20(4):265–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Tandon I, Heelan W, et al. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem Soc Rev. 2022;51(13):5330–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Yang Y, Zhang J, et al. Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy. Signal Transduct Target Ther. 2024;9(1):275.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med. 2017;65(3):93–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Kosti P, Maher J, Arnold JN. Perspectives on chimeric antigen receptor T-cell immunotherapy for solid tumors. Front Immunol. 2018;9:1104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Zheng Y, Melo MB, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36(8):707–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Y, Chen Z, Sun M, et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials. 2022;281: 121341.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivaram AJ, Wardiana A, Howard CB, et al. Recent advances in the generation of antibody-nanomaterial conjugates. Adv Healthc Mater. 2018;7(1):1.

    Article 

    Google Scholar
     

  • Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017;8(1):63–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338(6109):903–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30(29):5737–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saniee F, Shabani Ravari N, Goodarzi N, et al. Glutamate-urea-based PSMA-targeted PLGA nanoparticles for prostate cancer delivery of docetaxel. Pharm Dev Technol. 2021;26(4):381–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today. 2021;26(5):1319–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieto C, Vega MA, Martín Del Valle EM. Trastuzumab: more than a guide in HER2-positive cancer nanomedicine. Nanomaterials. 2020;10(9):1.

    Article 

    Google Scholar
     

  • Liu Y, Li K, Liu B, et al. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials. 2010;31(35):9145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abedin MR, Powers K, Aiardo R, et al. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep. 2021;11(1):7347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan J, Lei J, Li Y, et al. Manganese oxide-incorporated hybrid lipid nanoparticles amplify the potency of mrna vaccine via oxygen generation and STING activation. J Am Chem Soc. 2024;146(47):32689–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rana PS, Ignatz-Hoover JJ, Guo C, et al. Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens, and enhances T-cell anti-myeloma activity. Mol Cancer Ther. 2024;23(12):1743–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haist M, Mailänder V, Bros M. Nanodrugs targeting T cells in tumor therapy. Front Immunol. 2022;13: 912594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.

    Article 
    PubMed 

    Google Scholar
     

  • Tan Y, Chen H, Gou X, et al. Tumor vaccines: toward multidimensional anti-tumor therapies. Hum Vaccin Immunother. 2023;19(3):2271334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Yao W, Sun W, et al. Components, formulations, deliveries, and combinations of tumor vaccines. ACS Nano. 2024;18(29):18801–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Song D, Wang Z, et al. Antitumour vaccination via the targeted proteolysis of antigens isolated from tumour lysates. Nat Biomed Eng. 2024;9(2):234–48.

    Article 
    PubMed 

    Google Scholar
     

  • Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev. 2015;35(2):408–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361.

    Article 
    PubMed 

    Google Scholar
     

  • Hanahan D, Monje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell. 2023;41(3):573–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, et al. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther. 2020;5(1):99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169(2):107–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update. J Control Release. 2020;323:253–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin J, Liu J, Wei Z, et al. Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy.1–14.

  • Liu H, Zhu X, Wei Y, et al. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother. 2023;157: 114065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gujrati M, Vaidya AM, Mack M, et al. Targeted dual pH-sensitive lipid ECO/siRNA self-assembly nanoparticles facilitate in vivo cytosolic sieIF4E delivery and overcome paclitaxel resistance in breast cancer therapy. Adv Healthc Mater. 2016;5(22):2882–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Q, Liu J, Jiang Y, et al. Cell-selective messenger RNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid-derived lipid nanoparticles and cellular surface sialic acid. ACS Appl Mater Interfaces. 2019;11(50):46585–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Xiong M, Tian J, et al. Encapsulation and assessment of therapeutic cargo in engineered exosomes: a systematic review. J Nanobiotechnol. 2024;22(1):18.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine. 2016;11(18):2431–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo Y, Luo Z, Zhu Z, et al. Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes. Nat Nanotechnol. 2024;19(12):1858–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osaki T, Yokoe I, Sunden Y, et al. Efficacy of 5-aminolevulinic acid in photodynamic detection and photodynamic therapy in veterinary medicine. Cancers. 2019;11(4):5.

    Article 

    Google Scholar
     

  • Zhuo X, Liu Z, Aishajiang R, et al. Recent progress of copper-based nanomaterials in tumor-targeted photothermal therapy/photodynamic therapy. Pharmaceutics. 2023;15(9):1.

    Article 

    Google Scholar
     

  • Qin L, Yan P, Xie C, et al. Gold nanorod-assembled ZnGa(2)O(4): Cr nanofibers for LED-amplified gene silencing in cancer cells. Nanoscale. 2018;10(28):13432–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franskevych D, Prylutska S, Grynyuk I, et al. Mode of photoexcited C(60) fullerene involvement in potentiating cisplatin toxicity against drug-resistant L1210 cells. Bioimpacts. 2019;9(4):211–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grebinyk A, Prylutska S, Chepurna O, et al. Synergy of chemo- and photodynamic therapies with C(60) fullerene-doxorubicin nanocomplex. Nanomaterials. 2019;9(11):1.

    Article 

    Google Scholar
     

  • Liu J, Zhu C, Xu L, et al. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Lett. 2020;20(11):8102–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou J, Xing X, Teng C, et al. Cocrystal@protein-anchoring nanococktail for combinatorially treating multidrug-resistant cancer. Acta Pharm Sin B. 2024;14(10):4509–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel NR, Pattni BS, Abouzeid AH, et al. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65(13–14):1748–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Su C, Zhao L, et al. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. J Nanobiotechnol. 2017;15(1):66.

    Article 

    Google Scholar
     

  • Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Z, Lin K, Tang M, et al. A pH-driven small-molecule nanotransformer hijacks lysosomes and overcomes autophagy-induced resistance in cancer. Angew Chem Int Ed Engl. 2022;61(35): e202204567.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5(9):691–706.

  • Forest V, Pourchez J. Nano-delivery to the lung – by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev. 2022;183: 114173.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou QT, Leung SS, Tang P, et al. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Z, Gao Q, Wu K, et al. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev. 2023;202: 115111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 2018;8(5):1527–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi K, Chandra A, Jain K, et al. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019;7(4):259–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015;8:55–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng S, Wang W, Zhang R, et al. Nano-formulations for pulmonary delivery: past, present, and future perspectives. Pharmaceutics. 2024;16(2):4.

    Article 

    Google Scholar
     

  • Golia A, Mahmood BR, Fundora Y, et al. Amikacin Liposome Inhalation Suspension for Mycobacterium avium Complex Lung Disease. Sr Care Pharm. 2020; 35(4): 162–70.

  • Ziaei E, Emami J, Rezazadeh M, et al. Pulmonary delivery of docetaxel and celecoxib by PLGA porous microparticles for their synergistic effects against lung cancer. Anticancer Agents Med Chem. 2022;22(5):951–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell NRC, Ordunez P, Giraldo G, et al. WHO HEARTS: a global program to reduce cardiovascular disease burden: experience implementing in the Americas and opportunities in Canada. Can J Cardiol. 2021;37(5):744–55.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Hsu JC, Song W, et al. Nanorepair medicine for treatment of organ injury. Natl Sci Rev. 2024;11(9):nwae280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsabahy M, Heo GS, Lim SM, et al. Polymeric nanostructures for imaging and therapy. Chem Rev. 2015;115(19):10967–1011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175(2):489–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanza GM, Wallace KD, Scott MJ, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation. 1996;94(12):3334–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanza GM, Wallace KD, Fischer SE, et al. High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med Biol. 1997;23(6):863–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park D, Cho Y, Goh SH, et al. Hyaluronic acid-polypyrrole nanoparticles as pH-responsive theranostics. Chem Commun. 2014;50(95):15014–7.

    Article 
    CAS 

    Google Scholar
     

  • Qin J, Peng Z, Li B, et al. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale. 2015;7(33):13991–4001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang S, Lee HW, Jeon YH, et al. Combined fluorescence and magnetic resonance imaging of primary macrophage migration to sites of acute inflammation using near-infrared fluorescent magnetic nanoparticles. Mol Imaging Biol. 2015;17(5):643–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Li L, Zhang D, et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging. Magn Reson Imaging. 2020;68:113–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruckman MA, Jiang K, Simpson EJ, et al. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett. 2014;14(3):1551–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon SP, Jeon S, Lee SH, et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials. 2018;150:125–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Pan W, Wu G, et al. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques. Atherosclerosis. 2023;369:17–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao Y, Lan X, Zhang Y, et al. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B. 2023;13(11):4442–60.

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy JR, Korngold E, Weissleder R, et al. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small. 2010;6(18):2041–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobatto ME, Fayad ZA, Silvera S, et al. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm. 2010;7(6):2020–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iverson NM, Plourde NM, Sparks SM, et al. Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials. 2011;32(32):8319–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavares ER, Freitas FR, Diament J, et al. Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions. Int J Nanomed. 2011;6:2297–304.

    CAS 

    Google Scholar
     

  • Wu Z, Chen C, Zhang B, et al. EGFP-EGF1-conjugated poly(lactic-co-glycolic acid) nanoparticles, a new diagnostic tool and drug carrier for atherosclerosis. Int J Nanomed. 2019;14:2609–18.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Imura T, Leman LJ, et al. Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J Am Chem Soc. 2013;135(36):13414–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin MD, Ortega-Rivera OA, Steinmetz NF. Multivalent display of ApoAI peptides on the surface of tobacco mosaic virus nanotubes improves cholesterol efflux. Bioconjug Chem. 2022;33(10):1922–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu D, Li J, Qi Y, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J Nanobiotechnol. 2020;18(1):179.

    Article 
    CAS 

    Google Scholar
     

  • Xie S, Mo C, Cao W, et al. Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomater. 2022;142:49–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie DM, Zhong Q, Xu X, et al. Alpha lipoic acid-loaded electrospun fibrous patch films protect heart in acute myocardial infarction mice by inhibiting oxidative stress. Int J Pharm. 2023;632: 122581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zhu J, Xu YW, et al. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol. 2022;54: 102384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan M, Hou M, Yan J, et al. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res. 2022;15(10):9125–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajaj A, Rao MR, Pardeshi A, et al. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13(4):1331–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rachmawati H, Soraya IS, Kurniati NF, et al. In vitro study on antihypertensive and antihypercholesterolemic effects of a curcumin nanoemulsion. Sci Pharm. 2016;84(1):131–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southgate L, Machado RD, Gräf S, et al. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol. 2020;17(2):85–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiekerkoetter E, Kawut SM, de Jesus Perez VA. New and emerging therapies for pulmonary arterial hypertension. Annu Rev Med. 2019;70:45–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng C, Li B, Lin C, et al. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release. 2022;341:591–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vani JR, Mohammadi MT, Foroshani MS, et al. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. Excli j. 2016;15:378–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhury AA, Devi RV. Gestational diabetes mellitus—a metabolic and reproductive disorder. Biomed Pharmacother. 2021;143: 112183.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolli GB, Porcellati F, Lucidi P, et al. The physiological basis of insulin therapy in people with diabetes mellitus. Diabetes Res Clin Pract. 2021;175: 108839.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar S, Ekbal Kabir M, Kalita J, et al. Mesoporous silica nanoparticles: drug delivery vehicles for antidiabetic molecules. ChemBioChem. 2023;24(7): e202200672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Peng X, Zoulikha M, et al. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther. 2024;9(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt NJ, Lockwood GP, Heffernan SJ, et al. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia. Nat Nanotechnol. 2024;19(4):534–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu B, Jiang G, Yu W, et al. H(2)O(2)-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin. J Mater Chem B. 2017;5(41):8200–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha N, Araújo F, Shahbazi MA, et al. Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. J Control Release. 2016;232:113–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocha S, Lucas M, Ribeiro D, et al. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res. 2021;169: 105604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhou J, Zhang T, et al. Facile fabrication of an amentoflavone-loaded micelle system for oral delivery to improve bioavailability and hypoglycemic effects in KKAy mice. ACS Appl Mater Interfaces. 2019;11(13):12904–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Khemtong C, Yang X, et al. Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today. 2011;16(7):354–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Güngör S, Kahraman E. Nanocarriers mediated cutaneous drug delivery. Eur J Pharm Sci. 2021;158: 105638.

    Article 
    PubMed 

    Google Scholar
     

  • Ren J, Liu T, Bi B, et al. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J Pharm Sci. 2024;113(2):471–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratoddi I, Benassi L, Botti E, et al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomedicine. 2019;17:276–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moazeni M, Kelidari HR, Saeedi M, et al. Time to overcome fluconazole resistant Candida isolates: solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf B Biointerfaces. 2016;142:400–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong P, Sahle FF, Lohan SB, et al. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release. 2019;295:214–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Q, Lu Y, Yao W, et al. Molybdenum nanoparticles as a potential topical medication for alopecia treatment through antioxidant pathways that differ from minoxidil. J Trace Elem Med Biol. 2024;82: 127368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor AW. Ocular immune privilege. Eye. 2009;23(10):1885–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. Aaps j. 2010;12(3):348–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty M, Banerjee D, Mukherjee S, et al. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review. Polym Bull. 2023;80:11759–77.

    Article 
    CAS 

    Google Scholar
     

  • Li K, Lin M, Huang K, et al. Therapeutic effect and mechanism of action of pterostilbene nano drugs in dry eye models. Exp Eye Res. 2024;241: 109836.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui W, Chen S, Hu T, et al. Nanoceria-mediated cyclosporin a delivery for dry eye disease management through modulating immune-epithelial crosstalk. ACS Nano. 2024;18(17):11084–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hakim A, Guido B, Narsineni L, et al. Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: progress towards non-viral systems. Adv Drug Deliv Rev. 2023;196: 114781.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Rong R, Liang G, et al. Self-assembly hypoxic and ROS dual response nano prodrug as a new therapeutic approach for glaucoma treatments. Adv Sci. 2024;11(41): e2407043.

    Article 

    Google Scholar
     

  • Maulvi FA, Desai DT, Shetty KH, et al. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm. 2021;608: 121090.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Soni PD, Patel PJ, et al. Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies. Colloids Surf B Biointerfaces. 2021;208: 112096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando H, Abu Lila AS, Kawanishi M, et al. Reactivity of IgM antibodies elicited by PEGylated liposomes or PEGylated lipoplexes against auto and foreign antigens. J Control Release. 2018;270:114–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndt A, Lee SY, Ramakrishnan C, et al. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science. 2014;344(6182):420–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Cai G, Wang Y, et al. Microarray chip-based high-throughput screening of neurofilament light chain self-assembling peptide for noninvasive monitoring of Alzheimer’s disease. ACS Nano. 2024;18(28):18160–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witten J, Raji I, Manan RS, et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02490-y.

    Article 
    PubMed 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *