Layered double hydroxides for regenerative nanomedicine and tissue engineering: recent advances and future perspectives | Journal of Nanobiotechnology


  • Li L, Soyhan I, Warszawik E, Van Rijn P. Layered double hydroxides: recent progress and promising perspectives toward biomedical applications. Sci: Adv; 2024. p. 2306035.


    Google Scholar
     

  • Du H, Zhang D, Peng F, Yeung KWK, Liu X. Two-dimensional layered double hydroxides for biomedical applications: from nano-systems to surface- and body-systems. Prog Mater Sci. 2024;142:101220.

    Article 
    CAS 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Verma R, Viswanathan K, Subbarayan R, Ghotekar S. Multifunctional biomedical applications of MXene-based hydrogels: A review. Inorg Chem Commun. 2024;164:112457.

    Article 
    CAS 

    Google Scholar
     

  • Lee J, Seo HS, Park W, Park CG, Jeon Y, Park D-H. Biofunctional layered double hydroxide nanohybrids for Cancer therapy. Materials. 2022;15:7977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, et al. Biomaterials based on organic polymers and layered double hydroxides nanocomposites: drug delivery and tissue engineering. Pharmaceutics. 2023;15:413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release. 2021;330:398–426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C et al. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. Adv, Sci, 2023;10:2301806.

  • Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliv Rev. 2022;188:114451.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S, Choi G, Choy J-H. Multifunctional layered double hydroxides for drug delivery and imaging. Nanomaterials. 2023;13:1102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, et al. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev. 2022;51:6126–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev. 2022;186:114270.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C-S, Xu Y, Li J, Qin S-H, Huang S-W, Chen X-M, et al. Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. BioMed Eng OnLine. 2025;24:13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham DT, Thuy NTN, Thao NTP, Nhi LT, Thuy BTP. Naturally derived hydrogels for wound healing. Ther Deliv. 2025;16:349–63.

    Article 
    PubMed 

    Google Scholar
     

  • Holme S, Richardson SM, Bella J, Pinali C. Hydrogels for cardiac tissue regeneration: current and future developments. Int J Mol Sci. 2025;26:2309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghahremani-Nasab M, Babaie S, Bazdar S, Paiva-Santos AC, Del Bakhshayesh MR, Akbari-Gharalari N, et al. Infertility treatment using polysaccharides-based hydrogels: new strategies in tissue engineering and regenerative medicine. J Nanobiotechnol. 2025;23:162.

    Article 

    Google Scholar
     

  • Patel DK, Won S-Y, Jung E, Han SS. Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review. Int J Biol Macromol. 2025;293:139426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Dutta V, Gopalakrishnan C, Subbarayan R, Rana G, Radhakrishnan A, et al. Biomedical potential of hydrogels: a multifaceted approach to innovative medication delivery. Emergent Mater. 2024;7:721–63.

    Article 
    CAS 

    Google Scholar
     

  • Romaniuk P, Kołodziejska B, Kolmas J. Silicocarnotite-A new ceramic material with potential application in bone tissue regeneration. J Biomed Mater Res A. 2025;113:e37902.

    Article 
    PubMed 

    Google Scholar
     

  • Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T et al. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025.

  • Pan Y, Zhao H, Huang W, Liu S, Qi Y, Huang Y. Metal-Protein hybrid materials: unlocking new frontiers in biomedical applications. Adv Healthc Mater. 2025;14:e2404405.

    Article 
    PubMed 

    Google Scholar
     

  • Y W, Y ZLRY. C, D W, W Z, et al. Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration. Volume 30. Bio: Mater Today; 2024.


    Google Scholar
     

  • He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L et al. Bioactive 2D nanomaterials for neural repair and regeneration. Adv, Drug Deliv, Rev, 2022;187:114379.

  • Li X, Wang Y, Guo L, Geng X, Wang H, Dong A, et al. Long duration sodium hyaluronate hydrogel with dual functions of both growth prompting and acid-triggered antibacterial activity for bacteria-infected wound healing. Int J Biol Macromol. 2024;274:133423.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, He X, Dong K, Yang L, Ma B, Liu Y, et al. Combination therapy with ultrasound and 2D nanomaterials promotes recovery after spinal cord injury via Piezo1 downregulation. J Nanobiotechnol. 2023;21:91.

    Article 

    Google Scholar
     

  • Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, et al. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater. 2023;22:75–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Qian Y, Yang H, Bai Y, Hu H, Yang L, Mei G, et al. Bioactive layered double hydroxide nanoparticles loaded calcein under GelMA scaffolds promoted osteogenesis and angiogenesis for bone regeneration. Mater Des. 2024;238:112621.

    Article 
    CAS 

    Google Scholar
     

  • Wang G, Lv Z, Wang T, Hu T, Bian Y, Yang Y, et al. Surface functionalization of hydroxyapatite scaffolds with MgAlEu-LDH nanosheets for High-Performance bone regeneration. Adv Sci (Weinh Baden-Wurtt Ger). 2022;10:e2204234.


    Google Scholar
     

  • Qian J, Zhang Y, Chen Z, Du Y, Ni B-J. NiCo layered double hydroxides/nife layered double hydroxides composite (NiCo-LDH/NiFe-LDH) towards efficient oxygen evolution in different water matrices. Chemosphere. 2023;345:140472.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobbs C, Downing C, Jaskaniec S, Nicolosi V. TEM and EELS characterization of Ni–Fe layered double hydroxide decompositions caused by electron beam irradiation. Npj 2D Mater Appl. 2021;5:1–9.

    Article 

    Google Scholar
     

  • Musella E, Gualandi I, Ferrari G, Mastroianni D, Scavetta E, Giorgetti M, et al. Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors. Electrochim Acta. 2021;365:137294.

    Article 
    CAS 

    Google Scholar
     

  • Mallakpour S, Hatami M, Hussain CM. Recent innovations in functionalized layered double hydroxides: fabrication, characterization, and industrial applications. Adv Colloid Interface Sci. 2020;283:102216.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonelli D, Gualandi I, Musella E, Scavetta E. Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications. Nanomater (Basel Switz). 2021;11:725.

    Article 
    CAS 

    Google Scholar
     

  • Jiang Y, Shen Z, Tang C-S, Shi B. Synthesis and application of waste-based layered double hydroxide: A review. Sci Total Environ. 2023;903:166245.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knorpp J, Zawisza A, Huangfu A, Borzì S, Clark AH, Kata A. Hydrothermal synthesis of multi-cationic high-entropy layered double hydroxides. RSC Adv. 2022;12:26362–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, et al. Progress in layered double hydroxides (LDHs): synthesis and application in adsorption, catalysis and photoreduction. Sci Total Environ. 2024;912:169160.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Fu X, Song W, Li Y, Li X, Yan L. Recent progress of layered double Hydroxide-Based materials in wastewater treatment. Mater (Basel Switz). 2023;16:5723.

    Article 
    CAS 

    Google Scholar
     

  • Yasaei M, Khakbiz M, Ghasemi E, Zamanian A. Synthesis and characterization of ZnAl-NO3(-CO3) layered double hydroxide: A novel structure for intercalation and release of Simvastatin. Appl Surf Sci. 2019;467–468:782–91.

    Article 

    Google Scholar
     

  • Gabriel R, Dos Santos Lins PV, Vilela F, de AM SHV, Brandão RJ, Soletti JI, et al. Synthesis of layered double hydroxides: investigating the impact of stirring conditions and reactor design parameters. Heliyon. 2024;10:e30116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin T, Wang H, Song Z, Huang M, An S, Chen W et al. Insight into the simultaneous Super-Stable mineralization of AsO4 3-, Cd2 + and Pb2 + Using MgFe-LDHs. Chem (Weinh Bergstr Ger) 2024:e202403877.

  • Padalkar NS, Sadavar SV, Shinde RB, Patil AS, Patil UM, Dhawale DS, et al. Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. J Colloid Interface Sci. 2022;616:548–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, Son Y, Bae S, Kim T-H, Hwang Y. Adsorption of chromate ions by layered double Hydroxide-Bentonite nanocomposite for groundwater remediation. Nanomater (Basel Switz). 2022;12:1384.

    Article 

    Google Scholar
     

  • An S, Shang N, Chen B, Kang Y, Su M, Wang C, et al. Co-Ni layered double hydroxides wrapped on leaf-shaped copper oxide hybrids for non-enzymatic detection of glucose. J Colloid Interface Sci. 2021;592:205–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin KM, Muench F, Kunz U, Ensinger W. 3D NiCo-Layered double hydroxide@ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing. J Colloid Interface Sci. 2021;591:384–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu X, Xue H, Gong H, Bai M, Tang D, Ma R, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020;12:86.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Xu H, Lu S. Preparation and application of layered double hydroxide nanosheets. RSC Adv. 2021;11:24254–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izbudak B, Cecen B, Anaya I, Miri AK, Bal-Ozturk A, Karaoz E. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications. RSC Adv. 2021;11:30237–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, et al. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B. 2024;14:4665–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oxford Pharmascience Ltd. An Open-label, Single-dose, randomised, crossover study to evaluate changes in the pharmacokinetics of ibuprofen from ibuprofen-LDH dosed with and without release modifying excipients in normal, healthy, adult subjects. clinicaltrials.gov; 2017.

  • Lin C-W, Lin S-X, Kankala RK, Busa P, Deng J-P, Lue S-I, et al. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for Lowering hyperlipidemia. Int J Pharm. 2020;590:119921.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Li L, Lin S. Efficient antimicrobial properties of layered double hydroxide assembled with transition metals via a facile Preparation method. Chin Chem Lett. 2020;31:1511–5.

    Article 
    CAS 

    Google Scholar
     

  • Zhang D, Li M, Xu R, Xie J, Zhang Y, Qian S, et al. Complementary and synergistic design of Bi-Layered double hydroxides modified magnesium alloy toward multifunctional orthopedic implants. Adv Healthc Mater. 2023;12:2201367.

    Article 
    CAS 

    Google Scholar
     

  • Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D nanomaterials for biomedical applications. Mater Today. 2021;50:276–302.

    Article 
    CAS 

    Google Scholar
     

  • Mahgoub SM, Essam D, Eldin ZE, Moaty SAA, Shehata MR, Farghali A, et al. Carbon supported ternary layered double hydroxide nanocomposite for Fluoxetine removal and subsequent utilization of spent adsorbent as antidepressant. Sci Rep. 2024;14:3990.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. Explor (Beijing China). 2024;4:20230037.

    CAS 

    Google Scholar
     

  • Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, et al. Modification strategies for development of 2D Material-Based electrocatalysts for alcohol oxidation reaction. Adv Sci (Weinh Baden-Wurtt Ger). 2024;11:e2306132.


    Google Scholar
     

  • Khalili L, Dehghan G, Fazli A, Khataee A. State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci. 2023;314:102869.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge Y-W, Fan Z-H, Ke Q-F, Guo Y-P, Zhang C-Q, Jia W-T. SrFe12O19-doped nano-layered double hydroxide/chitosan layered scaffolds with a nacre-mimetic architecture guide in situ bone ingrowth and regulate bone homeostasis. Mater Today Bio. 2022;16:100362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng S, Zhang D, Li M, Liu X, Zhang Y, Qian S, et al. Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioact Mater. 2021;6:91–105.

    CAS 
    PubMed 

    Google Scholar
     

  • Peng F, Wang D, Zhang D, Cao H, Liu X. The prospect of layered double hydroxide as bone implants: A study of mechanical properties, cytocompatibility and antibacterial activity. Appl Clay Sci. 2018;165:179–87.

    Article 
    CAS 

    Google Scholar
     

  • Figueiredo MP, Borrego-Sánchez A, García-Villén F, Miele D, Rossi S, Sandri G, et al. Polymer/Iron-Based layered double hydroxides as multifunctional wound dressings. Pharmaceutics. 2020;12:1130.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moaty SAA, Farghali AA, Khaled R. Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA. Mater Sci Eng: C. 2016;68:184–93.

    Article 

    Google Scholar
     

  • Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: from biological functions to therapeutic potential. Int J Mol Sci. 2023;24:4822.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu H, Wang L, Bao Q, Ni D, Hu P, Shi J. Acid neutralization and immune regulation by Calcium-Aluminum-Layered double hydroxide for osteoporosis reversion. J Am Chem Soc. 2022;144:8987–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gicha BB, Tufa LT, Kang S, Goddati M, Bekele ET, Lee J. Transition Metal-Based 2D layered double hydroxide nanosheets: design strategies and applications in oxygen evolution reaction. Nanomater (Basel Switz). 2021;11:1388.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Z, Lin Y, Li L, Liu K, Wen W, Ding S, et al. 3D printing Drug-Free scaffold with Triple-Effect combination induced by Copper-Doped layered double hydroxides for the treatment of bone defects. ACS Appl Mater Interfaces. 2023;15:58196–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai Q, Li Q, Gao H, Yao L, Lin Z, Li D, et al. 3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-1α and TNF-α pathway of hUVECs. Biomater Sci. 2021;9:5519–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng C, Yu Z, Wu W, Li J, Wang E. CuFe layered double hydroxide as Self-Cascade nanoreactor for efficient antibacterial therapy. ACS Appl Mater Interfaces. 2023;15:56678–88.

    CAS 

    Google Scholar
     

  • Zhang W, Zhao Y, Wang W, Peng J, Li Y, Shangguan Y, et al. Colloidal surface engineering: growth of layered double hydroxides with intrinsic Oxidase-Mimicking activities to fight against bacterial infection in wound healing. Adv Healthc Mater. 2020;9:2000092.

    Article 
    CAS 

    Google Scholar
     

  • Zhang D, Cheng S, Tan J, Xie J, Zhang Y, Chen S, et al. Black Mn-containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration. Bioact Mater. 2022;17:394–405.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu M, Sun Z, Fan Z, Yu D, Mao Y, Guo Y. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Theranostics. 2021;11:6717–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B: Appl Biomater. 2018;106:863–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao C, He D, Yin K, Lin Y, Chen Y, Zhang Z, et al. Effect of the Sr–Fe layered double hydroxide coating based on the microenvironment response on implant osseointegration in osteoporotic rats. J Mater Chem B. 2024;12:1592–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang D, Zhang Z, Zhou Y, Fu Z, Li Q, Zhang Y, et al. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol. Chin J Chem Eng. 2022;46:31–9.

    Article 
    CAS 

    Google Scholar
     

  • An Z, Sun J, Mei Q, Wei B, Li M, Xie J, et al. Unravelling the effects of complexation of transition metal ions on the hydroxylation of catechol over the whole pH region. J Environ Sci. 2022;115:392–402.

    Article 
    CAS 

    Google Scholar
     

  • Yao M, Hao X, Shao H, Wang D, Li B, Xing S, et al. Metallic Nanoparticle-Doped oxide semiconductor film for bone tumor suppression and bone regeneration. ACS Appl Mater Interfaces. 2022;14:47369–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira Meneses CC, Monteiro de Sousa PR, Pinto LC, Coelho GM, Ferreira da Silva T, Ferreira LO, et al. Layered double hydroxide–indomethacin hybrid: A promising biocompatible compound for the treatment of neuroinflammatory diseases. J Drug Deliv Sci Technol. 2021;61:102190.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Mei X, Bian Y, Hu T, Weng X, Liang R, et al. Magnesium-based layered double hydroxide nanosheets: a new bone repair material with unprecedented osteogenic differentiation performance. Nanoscale. 2020;12:19075–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Su L, Lin DJ, Yen Uan J. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater. 2019;35:663–72.

    Article 
    PubMed 

    Google Scholar
     

  • Bini M, Ambrogi V, Donnadio A, Di Michele A, Ricci P, Nocchetti M. Layered double hydroxides intercalated with fluoride and methacrylate anions as multifunctional filler of acrylic resins for dental composites. Appl Clay Sci. 2020;197:105796.

    Article 
    CAS 

    Google Scholar
     

  • Bernardo MP, Ribeiro C. Zn–Al-based layered double hydroxides (LDH) active structures for dental restorative materials. J Mater Res Technol. 2019;8:1250–7.

    Article 
    CAS 

    Google Scholar
     

  • de Sousa ALMD, Dos Santos WM, de Souza ML, Silva LCPBB, Yun AEHK, Aguilera CSB, et al. Layered double hydroxides as promising excipients for drug delivery purposes. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2021;165:105922.

    Article 

    Google Scholar
     

  • Cao Y, Zheng D, Zhang F, Pan J, Lin C. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review. J Mater Sci Technol. 2022;102:232–63.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L-X, Hu J, Jia Y-B, Liu R-T, Cai T, Xu ZP. Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction. Nanoscale. 2021;13:7533–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhou L, Fang L, Cao F. Multifunctional carboxymethyl Chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater. 2020;104:104–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Kong Y, Xu J, Li X, Gou J, Yin T, et al. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma. Biomater Sci. 2020;8:897–911.

    Article 
    PubMed 

    Google Scholar
     

  • Peng L, Mei X, He J, Xu J, Zhang W, Liang R, et al. Monolayer nanosheets with an extremely high drug loading toward controlled delivery and Cancer theranostics. Adv Mater. 2018;30:1707389.

    Article 

    Google Scholar
     

  • Zhang H, Zhang L, Cao Z, Cheong S, Boyer C, Wang Z, et al. Two-Dimensional Ultra-Thin nanosheets with extraordinarily high drug loading and long blood circulation for Cancer therapy. Small (Weinh Bergstr Ger). 2022;18:e2200299.

    Article 

    Google Scholar
     

  • Adampourezare M, Nikzad B. Layered double hydroxide nanoparticles as signal-amplification elements in DNA biosensors: recent progress and challenges. Microchem J. 2024;199:110151.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Long Y, Deng Y, Han Y, Tishkevich D, Ha MN, et al. Hexagonal Boron nitride nanomaterials for biomedical applications. BMEMat. 2024;2:e12068.

    Article 
    CAS 

    Google Scholar
     

  • Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, et al. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnol. 2024;22:515.

    Article 

    Google Scholar
     

  • Wang Z, Cheng H, Sheng Y, Chen Z, Zhu X, Ren J, et al. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release. Biomaterials. 2022;287:121629.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Qian M, Jiang H, Zhou Y, Du Y, Yang Y, et al. Multifunctional mesoporous black phosphorus-based nanosheet for enhanced tumor-targeted combined therapy with biodegradation-mediated metastasis Inhibition. Biomaterials. 2020;236:119770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridhar V, Podjaski F, Alapan Y, Kröger J, Grunenberg L, Kishore V et al. Biocompatible carbon nitride-based light-driven microswimmer propulsion in biological and ionic media with responsive on-demand drug delivery 2021.

  • Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnol. 2024;22:67.

    Article 

    Google Scholar
     

  • He L, Sarkar S, Barras A, Boukherroub R, Szunerits S, Mandler D. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem Commun. 2017;53:4022–5.

    Article 
    CAS 

    Google Scholar
     

  • Althumayri K, Guesmi A, Abd El-Fattah W, Khezami L, Soltani T, Hamadi NB, et al. Effective adsorption and removal of doxorubicin from aqueous solutions using mesostructured silica nanospheres: Box-Behnken design optimization and adsorption performance evaluation. ACS Omega. 2023;8:14144–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev. 2022;469:214666.

    Article 
    CAS 

    Google Scholar
     

  • Mallakpour S, Azadi E, Hussain CM. Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: the important role of nanoparticles and layered double hydroxides. Int J Biol Macromol. 2021;193:183–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy AS, de Beer M, Pillai SK, Ray SS. Application of layered double hydroxides as a Slow-Release phosphate source: A comparison of hydroponic and soil systems. ACS Omega. 2023;8:15017–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang HR, Da Costa Fernandes CJ, Da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. Mg–Al and Zn–Al layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating Mitogen-Activated protein kinases. Adv Healthc Mater. 2018;7:1700693.

    Article 

    Google Scholar
     

  • Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Shen S, Hu T, Williams GR, Bian Y, Feng B, et al. Layered double hydroxide modified bone cement promoting osseointegration via multiple osteogenic signal pathways. ACS Nano. 2021;15:9732–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathi-karkan S, Shamsabadipour A, Moradi A, Rahdar A, Pourmadadi M, Romanholo Ferreira LF. Four-Dimensional Print Techniques: Compr Rev Biomedical Tissue Eng Developments BioNanoScience. 2024;14:4189–218.

  • Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, et al. A MgFe-LDH Nanosheet‐Incorporated smart Thermo‐Responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv Mater. 2023;35:2206545.

    Article 
    CAS 

    Google Scholar
     

  • Ahmadi S, Shafiei SS, Sabouni F. Electrospun nanofibrous scaffolds of Polycaprolactone/Gelatin reinforced with layered double hydroxide nanoclay for nerve tissue engineering applications. ACS Omega. 2022;7:28351–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, et al. MgFe-LDH nanoparticles: A promising leukemia inhibitory factor replacement for Self-Renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021;8:2003535.

    Article 
    CAS 

    Google Scholar
     

  • He W, MacRenaris KW, Griebel A, Kwesiga MP, Freitas E, Gillette A, et al. Semi-quantitative elemental imaging of corrosion products from bioabsorbable Mg vascular implants in vivo. Bioact Mater. 2025;43:225–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, Ribeiro CC, Barbosa JN, Barbosa MA, et al. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization towards M2 phenotype. Acta Biomater. 2023;155:667–83.

    Article 
    PubMed 

    Google Scholar
     

  • Fu H, Guo Y, Fang W, Wang J, Hu P, Shi J. Anti-Acidification and immune regulation by Nano-Ceria-Loaded Mg-Al layered double hydroxide for rheumatoid arthritis therapy. Adv Sci (Weinh Baden-Wurtt Ger). 2024;11:e2307094.


    Google Scholar
     

  • Zheng X, Chen L, Tan J, Miao J, Liu X, Yang T, et al. Effect of micro/nano-sheet array structures on the osteo-immunomodulation of macrophages. Regen Biomater. 2022;9:rbac075.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raina DB, Matuszewski L-M, Vater C, Bolte J, Isaksson H, Lidgren L, et al. A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing Spatiotemporal delivery of bone morphogenic protein–2 and Zoledronic acid. Sci Adv. 2020;6:eabc1779.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang H, Kim M, Feng Q, Lin S, Wei K, Li R, et al. Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing. Biomaterials. 2017;149:12–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costard LS, Kelly DC, Power RN, Hobbs C, Jaskaniec S, Nicolosi V, et al. Layered double hydroxide as a potent Non-viral vector for nucleic acid delivery using Gene-Activated scaffolds for tissue regeneration applications. Pharmaceutics. 2020;12:1219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, He X, Jing G, Wang H, Niu J, Qian Y, et al. Layered double hydroxide nanoparticles with osteogenic effects as MiRNA carriers to synergistically promote osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13:48386–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Zuo H, Fu Y, Cao Y, Li Q, Zhang Q, et al. Intranasal delivery of phenytoin loaded layered double hydroxide nanoparticles improves therapeutic effect on epileptic seizures. J Nanobiotechnol. 2024;22:144.

    Article 
    CAS 

    Google Scholar
     

  • Piao H, Kim MH, Cui M, Choi G, Choy J-H. Alendronate-Anionic clay nanohybrid for enhanced osteogenic proliferation and differentiation. J Korean Med Sci 2019;34.

  • Shokrolahi F, Latif F, Shokrollahi P, Farahmandghavi F, Shokrollahi S. Engineering Atorvastatin loaded Mg-Mn/LDH nanoparticles and their composite with PLGA for bone tissue applications. Int J Pharm. 2021;606:120901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardo MP, Rodrigues BCS, De Oliveira TD, Guedes APM, Batista AA, Mattoso LHC. Naproxen/Layered double hydroxide composites for Tissue-Engineering applications: physicochemical characterization and biological evaluation. Clays Clay Min. 2020;68:623–31.

    Article 
    CAS 

    Google Scholar
     

  • Sayyar Z, Sadigh MK, Pakdel PM. Nanoarchitectonics of a novel drug delivery system using Nickel–Iron double layer hydroxide in β-Cyclodextrin/Chitosan for controlled release of Sunitinib malate. J Inorg Organomet Polym Mater 2025:1–14.

  • Chen Y, Qiu X, Li C, Zhang Y, Li Y. Red fluorescence of Eu3+-Doped ZnAl-LDH response to intercalation and release of ibuprofen. J Fluoresc. 2022;32:533–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sekar Jeyakumar GF, Gunasekaran D, Panneerselvam Manimegalai N, Tiruchirapalli Sivagnanam U. Tailored thymoquinone intercalated layered double hydroxide (LDH) nanocomposites to accelerate mineralization for enhanced osteogenesis. Appl Clay Sci. 2024;252:107339.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y-X, Zhu R, Ke Q-F, Gao Y-S, Zhang C-Q, Guo Y-P. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. Nanoscale. 2017;9:6765–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y-X, Zhu R, Xu Z, Ke Q-F, Zhang C-Q, Guo Y-P. Self-assembly of pifithrin-α-loaded layered double hydroxide/chitosan nanohybrid composites as a drug delivery system for bone repair materials. J Mater Chem B. 2017;5:2245–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Yang H, Bai Y, Cheng L, Zhu R. rBMSC osteogenic differentiation enhanced by graphene quantum Dots loaded with Immunomodulatory layered double hydroxide nanoparticles. Biomed Mater. 2022;17:024101.

    Article 

    Google Scholar
     

  • Belgheisi G, Haghbin Nazarpak M, Solati-Hashjin M. Fabrication and evaluation of combined 3D printed/pamidronate-layered double hydroxides enriched electrospun scaffolds for bone tissue engineering applications. Appl Clay Sci. 2022;225:106538.

    Article 
    CAS 

    Google Scholar
     

  • Bian Y, Hu T, Zhao K, Cai X, Li M, Tan C, et al. A LDH-Derived metal sulfide Nanosheet-Functionalized bioactive glass scaffold for vascularized osteogenesis and periprosthetic infection prevention/treatment. Adv Sci (Weinh Baden-Wurtt Ger). 2024;11:e2403009.


    Google Scholar
     

  • Tang Y-Q, Wang Q-Y, Ke Q-F, Zhang C-Q, Guan J-J, Guo Y-P. Mineralization of ytterbium-doped hydroxyapatite Nanorod arrays in magnetic Chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chem Eng J. 2020;387:124166.

    Article 
    CAS 

    Google Scholar
     

  • Bian Y, Zhao K, Hu T, Tan C, Liang R, Weng X. A se Nanoparticle/MgFe-LDH composite nanosheet as a multifunctional platform for osteosarcoma eradication, antibacterial and bone reconstruction. Adv Sci (Weinh Baden-Wurtt Ger) 2024:e2403791.

  • Eskandari N, Shafiei SS. Fabrication and evaluation of layered double Hydroxide-Enriched ß-Tricalcium phosphate nanocomposite granules for bone regeneration: in vitro study. Mol Biotechnol. 2021;63:477–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eskandari N, Shafiei SS, Dehghan MM, Farzad-Mohajeri S. In vivo evaluation of bone regeneration behavior of novel Β ‐tricalcium phosphate/layered double hydroxide nanocomposite granule as bone graft substitutes. J Biomed Mater Res B: Appl Biomater. 2022;110:1001–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J-J, Ge Y-W, Fan Z-H, Li Y, Jia W-T, Guo Y-P. Graphene oxide-modified layered double hydroxide/chitosan nacre-mimetic scaffolds treat breast cancer metastasis-induced bone defects. Carbon. 2022;200:63–74.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Z, Li C, Lin Y, Li L, Liu K, Wen W, et al. Versatile 3D printing scaffold with Spatiotemporal release of multiple drugs for bone regeneration. ACS Nano. 2025;19:13637–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • baradaran T, Shafiei SS, Mohammadi S, Moztarzadeh F. Poly (ε-caprolactone)/layered double hydroxide microspheres-aggregated nanocomposite scaffold for osteogenic differentiation of mesenchymal stem cell. Mater Today Commun. 2020;23:100913.

    Article 
    CAS 

    Google Scholar
     

  • Belgheisi G, Nazarpak MH, Hashjin MS. Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: fabrication, characterization and in vitro study. Appl Clay Sci. 2020;185:105434.

    Article 
    CAS 

    Google Scholar
     

  • Alarçin E, İzbudak B, Yüce Erarslan E, Domingo S, Tutar R, Titi K, et al. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel Bioinks with high printability for 3D extrusion Bioprinting. J Biomed Mater Res A. 2023;111:209–23.

    Article 
    PubMed 

    Google Scholar
     

  • Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: fabrication, characterization, and in vivo study. Mater Sci Eng: C. 2017;76:701–14.

    Article 
    CAS 

    Google Scholar
     

  • Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: an in vitro evaluation. Colloids Surf B: Biointerfaces. 2017;158:697–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Zhang Z, Dong L, Waterhouse GIN, Zhang Q, Li L. A remarkable thermosensitive hydrogel cross-linked by two inorganic nanoparticles with opposite charges. J Colloid Interface Sci. 2019;538:530–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, et al. Neuro–bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023;11:1–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Zhang M, Zhai D, Qin C, Wang Y, Ma J, et al. Polyhedron-Like biomaterials for innervated and vascularized bone regeneration. Adv Mater. 2023;35:2302716.

    Article 
    CAS 

    Google Scholar
     

  • Bai Y, Wang Z, Yu L, Dong K, Cheng L, Zhu R. The enhanced generation of motor neurons from mESCs by MgAl layered double hydroxide nanoparticles. Biomed Mater. 2023;18:034101.

    Article 
    CAS 

    Google Scholar
     

  • Bai Y, Zhu Y, He X, Huang R, Xu X, Yang L et al. Size-Optimized layered double hydroxide nanoparticles promote neural progenitor cells differentiation of embryonic stem cells through the regulation of M6A methylation. Int J Nanomed 2024:4181–97.

  • Zhu R, Zhu X, Zhu Y, Wang Z, He X, Wu Z, et al. Immunomodulatory layered double hydroxide nanoparticles enable neurogenesis by targeting transforming growth Factor-β receptor 2. ACS Nano. 2021;15:2812–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal S, Park S, Choi J, Vu TTH, Doan VHM, Vo TT, et al. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci. 2023;321:103013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasi PB, Serafin A, O’Brien L, Moghbel N, Novikov LN, Kelk P, et al. Electroconductive gelatin/hyaluronic acid/hydroxyapatite scaffolds for enhanced cell proliferation and osteogenic differentiation in bone tissue engineering. Biomater Adv. 2025;173:214286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beheshtizadeh N, Seraji AA, Azadpour B, Rezvantalab S. The stability and self-assembly of tri-calcium silicate and hydroxyapatite scaffolds in bone tissue engineering applications. J Biol Eng. 2025;19:16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Lan L, Mu J, Hou S, Cheng L. [Research progress on biocomposites based on bioactive glass]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J Biomed Eng = Shengwu Yixue Gongchengxue Zazhi. 2023;40:805–11.


    Google Scholar
     

  • Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive glass in tissue regeneration: unveiling recent advances in regenerative strategies and applications. Adv Mater (Deerf Beach Fla). 2025;37:e2312964.

    Article 

    Google Scholar
     

  • Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. Biomaterials for bone tissue engineering: achievements to date and future directions. Biomed Mater (Bristol Engl). 2024;20:012001.

    Article 

    Google Scholar
     

  • Bezerra Melo MC, Spirandeli BR, Barbosa L, Ribeiro Dos Santos V, Bastos de Campos TM, Thim GP, et al. Enhanced mechanical strength and bioactivity of 3D-printed β-TCP scaffolds coated with bioactive glasses. J Mech Behav Biomed Mater. 2025;163:106850.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu F, Zhao X, Zhang S, Lu W, Li P, Yang W, et al. Regulation of T cell glycosylation by MXene/β-TCP nanocomposite for enhanced mandibular bone regeneration. Adv Healthc Mater. 2025;14:e2404015.

    Article 
    PubMed 

    Google Scholar
     

  • Song Y, Wang H, Liu Q, Li G, Wang S, Zhu X. Sodium Dodecyl sulfate (SDS) intercalated MgAl layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy. Surf Coat Technol. 2021;422:127524.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Zhou X, Yin M, Pu J, Yuan N, Ding J. Superhydrophobic and Self-Healing Mg-Al layered double hydroxide/silane composite coatings on the Mg alloy surface with a Long-Term Anti-corrosion lifetime. Langmuir. 2021;37:8129–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Sun X, Zhu C-L, Zhang F, Zeng R-C, Zou Y-H, et al. Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31. Prog Org Coat. 2020;147:105746.

    Article 
    CAS 

    Google Scholar
     

  • Kaseem M, Ramachandraiah K, Hossain S, Dikici B. A review on LDH-Smart functionalization of anodic films of Mg alloys. Nanomater (Basel Switz). 2021;11:536.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Wang D, Qiu J, Peng F, Liu X. Regulating the local pH level of titanium via Mg–Fe layered double hydroxides films for enhanced osteogenesis. Biomater Sci. 2018;6:1227–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Zhang W, Chen Z. Universal biomimetic Preparation and immobilization of layered double hydroxide films and adsorption behavior. Appl Surf Sci. 2017;392:153–61.

    Article 
    CAS 

    Google Scholar
     

  • Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, et al. Tissue engineering strategies to increase osteochondral regeneration of stem cells; a close look at different modalities. Stem Cell Rev Rep. 2021;17:1294–311.

    Article 
    PubMed 

    Google Scholar
     

  • Aliakbarzadeh S, Abdouss M, Ali Khonakdar H, Rahdar A, Fathi-karkan S. Gelatin methacrylate/poly(2-ethyl-2-oxazoline) porous hydrogel loaded with Kartogenin drug as a biocompatible scaffold for cartilage tissue regeneration. J Mol Liq. 2024;404:124982.

    Article 
    CAS 

    Google Scholar
     

  • Dalmonte T, Andreani G, Rudelli C, Isani G. Efficacy of extracts of Oleogum resin of Boswellia in the treatment of knee osteoarthritis: A systematic review and Meta-Analysis. Phytother Res: PTR. 2024;38:5672–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cometa S, Busto F, Scalia AC, Castellaneta A, Gentile P, Cochis A, et al. Effectiveness of Gellan gum scaffolds loaded with Boswellia serrata extract for in-situ modulation of pro-inflammatory pathways affecting cartilage healing. Int J Biol Macromol. 2024;277:134079.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trucco D, Riacci L, Vannozzi L, Manferdini C, Arrico L, Gabusi E, et al. Primers for the adhesion of Gellan Gum-Based hydrogels to the cartilage: A comparative study. Macromol Biosci. 2022;22:e2200096.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Yan W, Wang J, Xie S, Tao WA, Lee C-W, et al. Surface functionalization of exosomes for chondrocyte-targeted SiRNA delivery and cartilage regeneration. J Control Release. 2024;369:493–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su C, Lin D, Huang X, Feng J, Jin A, Wang F, et al. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnol. 2024;22:182.

    Article 
    CAS 

    Google Scholar
     

  • Lee SS, Choi GE, Lee HJ, Kim Y, Choy J-H, Jeong B. Layered double hydroxide and polypeptide thermogel nanocomposite system for chondrogenic differentiation of stem cells. ACS Appl Mater Interfaces. 2017;9:42668–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu P, Li M, Yu H, Fang H, Yin J, Zhu D, et al. Biphasic CK2.1-coated β-glycerophosphate Chitosan/LL37-modified layered double hydroxide Chitosan composite scaffolds enhance coordinated hyaline cartilage and subchondral bone regeneration. Chem Eng J. 2021;418:129531.

    Article 
    CAS 

    Google Scholar
     

  • Gao J, Feng L, Chen B, Fu B, Zhu M. The role of rare Earth elements in bone tissue engineering scaffolds – A review. Compos B: Eng. 2022;235:109758.

    Article 
    CAS 

    Google Scholar
     

  • Gao X, Zhang J, Gong Y, Yan L. The biomedical applications of nanozymes in orthopaedics based on regulating reactive oxygen species. J Nanobiotechnol. 2024;22:569.

    Article 

    Google Scholar
     

  • Xie M, Pan B, Li N, Zhao S, Yan J, Guo S, et al. 2D Graphene/FeOCl heterojunctions with enhanced tribology performance as a lubricant additive for liquid paraffin. RSC Adv. 2022;12:2759–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kałużny J, Świetlicka A, Wojciechowski Ł, Boncel S, Kinal G, Runka T, et al. Machine learning approach for Application-Tailored nanolubricants’ design. Nanomater (Basel Switz). 2022;12:1765.

    Article 

    Google Scholar
     

  • Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered microvessels: A review of current engineering strategies and applications. Adv Healthc Mater. 2024;13:e2303419.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng S, Lan L, Li M, Chu X, Zhong H, Yao M, et al. Pure Mg–Al layered double hydroxide film on magnesium alloys for orthopedic applications. ACS Omega. 2021;6:24575–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, et al. Amplifying STING activation by Cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16:1260–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan J, Chen Z, Liang X, Chen Y, Li H, Tian X, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials. 2020;255:120199.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater. 2022;18:26–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, He S, Dong Y, Chen M, Xia Z, Cai K, et al. Cobalt-doped layered hydroxide coating on titanium implants promotes vascularization and osteogenesis for accelerated fracture healing. Mater Today Bio. 2024;24:100912.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol. 2024;40:72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida YG, Yan S, Xu H, Yang J. Novel metal nanomaterials to promote angiogenesis in tissue regeneration. Eng Regen. 2023;4:265–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Gong X, Wang J, Wang Y, Zhang Y, Li T, et al. Investigation of nickel sulfate-induced cytotoxicity and underlying toxicological mechanisms in human umbilical vein endothelial cells through oxidative stress, inflammation, apoptosis, and MAPK signaling pathways. Environ Toxicol. 2022;37:2058–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res. 2024;40:501–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan VHG, Duong H-S, Le Q-GT, Janarthanan G, Vijayavenkataraman S, Nguyen H-NH, et al. Nanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained release of protein therapeutics in tissue engineering applications. J Nanobiotechnol. 2023;21:405.

    Article 
    CAS 

    Google Scholar
     

  • Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current Understanding and future perspectives. J Transl Med. 2023;21:441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasan SS, Jabs M, Taylor J, Wiedmann L, Leibing T, Nordström V, et al. Endothelial Notch signaling controls insulin transport in muscle. EMBO Mol Med. 2020;12:e09271.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai Q, Chen X, Fei D, Guo X, He X, Zhao W, et al. Nanorepairers rescue Inflammation-Induced mitochondrial dysfunction in mesenchymal stem cells. Adv Sci (Weinh Baden-Wurtt Ger). 2022;9:e2103839.


    Google Scholar
     

  • Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol. 2024;7:1534.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong W, Das S, Sierra-Pagan JE, Skie E, Dsouza N, Larson TA, et al. ETV2 functions as a pioneer factor to regulate and reprogram the endothelial lineage. Nat Cell Biol. 2022;24:672–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du H, Li B, Yu R, Lu X, Li C, Zhang H, et al. ETV2 regulating PHD2-HIF-1α axis controls metabolism reprogramming promotes vascularized bone regeneration. Bioact Mater. 2024;37:222–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Hu T, Lin G, Wang X, Zhu Y, Liang R, et al. The synthesis of a DHAD/ZnAlTi-LDH composite with advanced UV blocking and antibacterial activity for skin protection. RSC Adv. 2020;10:9786–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorg H, Sorg CGG. Skin wound healing: of players, patterns, and processes. Eur Surg Res. 2023;64:141–57.

    Article 
    PubMed 

    Google Scholar
     

  • Fernandes JDC, Pinto C, Kang TS, De Magalhães Padilha HR, Koh P, Constantino IHJ. Layered double hydroxides are promising nanomaterials for tissue bioengineering application. Adv Biosyst. 2019;3:1800238.

    Article 

    Google Scholar
     

  • Cabral-Pacheco GA, Garza-Veloz I, Castruita-De La Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21:9739.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardeazabal L, Izeta A. Elastin and collagen fibres in cutaneous wound healing. Exp Dermatol. 2024;33:e15052.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadi A, Abdolvand H, Ayati Najafabadi SA, Nejaddehbashi F, Beigi-Boroujeni S, Makvandi P, et al. Antibacterial Host–Guest intercalated LDH-Adorned polyurethane for accelerated dermal wound healing. ACS Appl Bio Mater. 2022;5:5800–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiny PJ, Vimala Devi M, Felciya SJG, Ramanathan G, Fardim P, Sivagnanam UT. In vitro and in vivo evaluation of poly-3-hydroxybutyric acid-sodium alginate as a core-shell nanofibrous matrix with arginine and bacitracin-nanoclay complex for dermal reconstruction of excision wound. Int J Biol Macromol 2021;168:46–58.

  • Zhang W, Zhang B, Wang Y, Cao X, Wang J, Lu W, et al. Gelatin-Based hydrogel functionalized with dopamine and layered double hydroxide for wound healing. Gels. 2024;10:318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szerlauth A, Madácsy T, Samu GF, Bíró P, Erdélyi M, Varga G, et al. Reduction of intracellular oxidative stress with a copper-incorporated layered double hydroxide. Chem Commun. 2024;60:1325–8.

    Article 
    CAS 

    Google Scholar
     

  • Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, et al. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun. 2024;15:1–13.


    Google Scholar
     

  • Awassa J, Cornu D, Soulé S, Carteret C, Ruby C, El-Kirat-Chatel S. Divalent metal release and antimicrobial effects of layered double hydroxides. Appl Clay Sci. 2022;216:106369.

    Article 
    CAS 

    Google Scholar
     

  • Yoosefi S, Rakhshani A, Montazeri V, Tavakoli M, Aliabadi A, Fatahi Y, et al. Dual drug delivery system based on layered double hydroxides/carboxymethyl cellulose-poly ethylene oxide Bionanocomposite electrospun fibrous Mats: fabrication, characterization, in-vitro and in-vivo studies. Int J Biol Macromol. 2022;222:3142–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Gong P, Li Y, Yu J, Wang F, Li X, et al. Double-carrier drug delivery system based on polyurethane-polyvinyl alcohol/layered double hydroxide nanocomposite hydrogel. Mater Lett. 2019;243:1–4.

    Article 
    CAS 

    Google Scholar
     

  • Malafatti JOD, Bernardo MP, Moreira FKV, Ciol H, Inada NM, Mattoso LHC, et al. Electrospun poly(lactic acid) nanofibers loaded with silver sulfadiazine/[Mg–Al]-layered double hydroxide as an antimicrobial wound dressing. Polym Adv Technol. 2020;31:1377–87.

    Article 
    CAS 

    Google Scholar
     

  • Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an Up-to-Date overview. Mol (Basel Switz). 2020;25:2699.

    Article 
    CAS 

    Google Scholar
     

  • Du S, Zhou N, Xie G, Chen Y, Suo H, Xu J, et al. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: toward promoting infected wounds healing. Nano Energy. 2021;85:106004.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Sun Y, Li S, Liu M, Qin X, Chen X, et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett. 2020;20:3602–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asghari Niari S, Rahbarghazi R, Salehi R, Kazemi L, Fathi Karkan S, Karimipour M. Fabrication, characterization and evaluation of the effect of PLGA and PLGA–PEG biomaterials on the proliferation and neurogenesis potential of human neural SH-SY5Y cells. Microsc Res Tech. 2022;85:1433–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang X, Zhang T, Li J, Yu L, Liu Z, Liu Y, et al. LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway. Biomaterials. 2025;314:122873.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:245.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Song L, Li Y, Guo J, Huang S, Du S, et al. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. J Transl Med. 2023;21:1–20.

    Article 

    Google Scholar
     

  • Wang L, Zhang B, Yang X, Guo S, Waterhouse GIN, Song G, et al. Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact Mater. 2023;20:126–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Wang Z, Wang Z, Pang X, Yang L, Li L, et al. LDH-doped gelatin-chitosan scaffold with aligned microchannels improves anti-inflammation and neuronal regeneration with guided axonal growth for effectively recovering spinal cord injury. Appl Mater Today. 2023;34:101884.

    Article 

    Google Scholar
     

  • Zha S, Liu H, Li H, Li H, Wong K-L, All AH. Functionalized nanomaterials capable of crossing the Blood-Brain barrier. ACS Nano. 2024;18:1820–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cogill SA, Lee J-H, Jeon M-T, Kim D-G, Chang Y. Hopping the hurdle: strategies to enhance the molecular delivery to the brain through the Blood-Brain barrier. Cells. 2024;13:789.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, et al. Anti-Parkinsonian therapy: strategies for crossing the Blood-Brain barrier and Nano-Biological effects of nanomaterials. Nano-Micro Lett. 2022;14:105.

    Article 
    CAS 

    Google Scholar
     

  • Villanueva MT. Engineered nasal bacteria slide drugs into the brain. Nat Rev Drug Discov. 2025;24:247.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samaridou E, Walgrave H, Salta E, Álvarez DM, Castro-López V, Loza M, et al. Nose-to-brain delivery of enveloped RNA – cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials. 2020;230:119657.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chia S, Cataldi RL, Ruggeri FS, Limbocker R, Condado-Morales I, Pisani K, et al. A relationship between the structures and neurotoxic effects of Aβ oligomers stabilized by different metal ions. ACS Chem Neurosci. 2024;15:1125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H, Harrison FE, Aschner M, Bowman AB. Exposing the role of metals in neurological disorders: a focus on manganese. Trends Mol Med. 2022;28:555–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo J, Han J, Hee Lim M. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol. 2023;4:548–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni D, Musale S, Panzade P, Paiva-Santos AC, Sonwane P, Madibone M, et al. Surface functionalization of nanofibers: the multifaceted approach for advanced biomedical applications. Nanomaterials. 2022;12:3899.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni D, Giram P, Mahore J, Kapare H, Panzade P. Electrospun nanofibers: a promising paradigm for biomedical applications. Int J Polym Mater Polym Biomaterials. 2025;74:403–23.

    Article 
    CAS 

    Google Scholar
     

  • Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. New J Chem. 2021;45:21508–33.

    Article 
    CAS 

    Google Scholar
     

  • Creeth J, Smith G, Franks B, Hara A, Zero D. Remineralisation of enamel erosive lesions by daily-use fluoride treatments: network meta-analysis of an in situ study set. Clin Oral Investig. 2024;29:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoxha A, Karpukhina N, Gillam DG, Bushby AJ, Patel MP. Fluoride rechargeable layered double hydroxide powders for dental applications. Appl Clay Sci. 2021;200:105863.

    Article 
    CAS 

    Google Scholar
     

  • Hoxha A, Gillam DG, Agha A, Karpukhina N, Bushby AJ, Patel MP. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36:973–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo D, Liu X, Dai S, Yi J, Tang N, Cai Y, et al. Highly crystalline copper Aluminum-Layered double hydroxides with intrinsic Fenton-Like catalytic activity for robust oral health management. Inorg Chem. 2024;63:10691–704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin Y, Jian L, Li B, Liang C, Han X, Zhao X, et al. Mg-Fe layered double hydroxides modified titanium enhanced the adhesion of human gingival fibroblasts through regulation of local pH level. Mater Sci Eng: C. 2021;131:112485.

    Article 
    CAS 

    Google Scholar
     

  • Ghiasi M, Hashemi M, Salimi A, Jadidi K, Tavallaie M, Aghamollaei H. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Tissue Cell. 2023;82:102117.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uzel E, Durgun ME, Esentürk-Güzel İ, Güngör S, Özsoy Y. Nanofibers in ocular drug targeting and tissue engineering: their importance, advantages, advances, and future perspectives. Pharmaceutics. 2023;15:1062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novack GD, Robin AL. Ocular Pharmacology. J Clin Pharmacol. 2024;64:1068–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Lu J, Zhou L, Liang J, Fang L, Cao F. Multifunctional nanocomposite eye drops of cyclodextrin complex@layered double hydroxides for relay drug delivery to the posterior segment of the eye. Carbohydr Polym. 2021;260:117800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, et al. Sustained release of brimonidine from a new composite drug delivery system for treatment of Glaucoma. ACS Appl Mater Interfaces. 2017;9:7990–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowmya B, Hemavathi AB, Panda PK. Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater. 2021;10:91–117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Radhakrishnan A, Rana G, Dutta V, Batoo KM, et al. Cerium oxide nanoparticles and their polymeric composites: advancements in biomedical applications. J Inorg Organomet Polym Mater. 2024;34:5691–717.

    Article 
    CAS 

    Google Scholar
     

  • Strimaite M, Wells CJ R, Prior J, Stuckey TJ, Wells DA, Davies J. Layered rare-earth hydroxides as multi-modal medical imaging probes: particle size optimisation and compositional exploration. Dalton Trans. 2024;53:8429–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, et al. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol. 2024;265:130991.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Verma R, Dutta V, Rana G, Duglet R, et al. Role of degrading hydrogels in hepatocellular carcinoma drug delivery applications: A review. J Drug Deliv Sci Technol. 2024;95:105628.

    Article 
    CAS 

    Google Scholar
     

  • Shen W, Hu T, Liu X, Zha J, Meng F, Wu Z, et al. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun. 2022;13:3384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Wang Y, Williams GR, Fu L, Wu J, Wang H et al. Multicomponent Transition Metal Dichalcogenide Nanosheets for Imaging-Guided Photothermal and Chemodynamic Therapy. Adv, Sci, 2020;7:2000272.

  • Cao Z, Zhang L, Liang K, Cheong S, Boyer C, Gooding JJ, et al. Biodegradable 2D Fe–Al hydroxide for nanocatalytic tumor-Dynamic therapy with tumor specificity. Adv Sci. 2018;5:1801155.

    Article 

    Google Scholar
     

  • Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive review on the degradation chemistry and toxicity studies of functional materials. ACS Biomater Sci Eng. 2022;8:2161–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Cai Y, Zhang M, Yu L, Wu F, Jiang J, et al. Novel Ca-SLS-LDH nanocomposites obtained via lignosulfonate modification for corrosion protection of steel bars in simulated concrete pore solution. Appl Clay Sci. 2021;211:106195.

    Article 
    CAS 

    Google Scholar
     

  • Pang H, Wu Y, Chen Y, Chen C, Nie X, Li P, et al. Development of polysaccharide-coated layered double hydroxide nanocomposites for enhanced oral insulin delivery. Drug Deliv Transl Res. 2024;14:2345–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Buffet J-C, O’Hare D. Surface modification of aqueous miscible organic layered double hydroxides (AMO-LDHs). Dalton Trans. 2020;49:8498–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalili L, Dehghan G, Akbar Moosavi-Movahedi A, Yoon Y, Khataee A. In vitro and in Silico insights into the molecular interaction mechanism of acetylshikonin with bovine serum albumin. J Mol Liq. 2022;365:120191.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Li B, Sun J, Ma C, Wan S, Li Y, et al. Engineered Near-Infrared fluorescent protein assemblies for robust bioimaging and therapeutic applications. Adv Mater. 2020;32:2000964.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Liang J, Bongers A, Richardson JJ, Liang K, Gu Z. Site-Specific antibody assembly on nanoparticles via a versatile coating method for improved cell targeting. Adv Sci. 2023;10:2206546.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Liu Y, Wang K, Jin L, Chen J, Chen H, et al. High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction. J Colloid Interface Sci. 2025;684:566–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslah H, Skarbek C, Gourson C, Plamont M-A, Pethe S, Jullien L, et al. In-Cell generation of anticancer phenanthridine through bioorthogonal cyclization in antitumor prodrug development. Angew Chem Int Ed. 2021;60:24043–7.

    Article 
    CAS 

    Google Scholar
     

  • Rezaei H, Shahrezaee M, Monfared MJ, Karkan SF, Ghafelehbashi R. Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications. J Polym Eng. 2021;41:375–86.

    Article 
    CAS 

    Google Scholar
     

  • Saghati S, Rahbarghazi R, Fathi Karkan S, Nazifkerdar S, Khoshfetrat AB, Tayefi Nasrabadi H. Shape memory polymers in osteochondral tissue engineering. J Res Clin Med. 2022;10:30.

    Article 

    Google Scholar
     

  • McIntyre CW, Pai P, Warwick G, Wilkie M, Toft AJ, Hutchison AJ. Iron-Magnesium hydroxycarbonate (Fermagate): A novel Non-Calcium-Containing phosphate binder for the treatment of hyperphosphatemia in chronic Hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu R, Cheng L. Application of nano layered double hydroxide in cartilage regeneration and Preparation thereof. US2024416002 (A1), 2024.

  • Hine CE, Franks MA, Patel M, Karpukhina N, Hill R, Parker S. Dental Composition. US20190099337A1, 2019.

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *