Layertronics, engineering the electronic properties through the layer degree of freedom, has attracted considerable attention due to its promising applications in next-generation spintronic technologies. Here, by coupling sliding ferroelectricity with A-type antiferromagnetism, we demonstrate a mechanism for layer-polarization-engineered electronic property through symmetry analysis based on the tight-binding (TB) model. It is found that breaking the inversion symmetry and time-inversion symmetry in the model gives rise to ferroelectricity and a layer-polarized anomalous valley Hall effect. Crucially, this valley polarization is ferroelectrically switchable, enabling non-volatile electrical control of the layer-resolved Berry curvature. Using first-principles calculations, this mechanism and phenomenon are verified in the multiferroic bilayer Janus RuClF. Our findings provide a promising platform for 2D bilayer materials, which hold great potential for applications in nanoelectronic and spintronic devices.
You have access to this article
Please wait while we load your content…
Something went wrong. Try again?