In vivo transformations of positively charged nanoparticles alter the formation and function of RuBisCO photosynthetic protein corona


  • Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjidemetriou, M. & Kostarelos, K. Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

  • Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci.: Nano 8, 1067–1080 (2021).

    CAS 

    Google Scholar
     

  • Pinals, R. L., Chio, L., Ledesma, F. & Landry, M. P. Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst 145, 5090–5112 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y., Dai, W. & Luan, Y. Bio- and eco-corona related to plants: understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 317, 120784 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurepa, J., Shull, T. E. & Smalle, J. A. Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues. J. Nanobiotechnol. 18, 28 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowry, G. V. et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19, 1255–1269 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voke, E., Pinals, R. L., Goh, N. S. & Landry, M. P. In planta nanosensors: understanding biocorona formation for functional design. ACS Sens. 6, 2802–2814 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bing, J., Xiao, X., McClements, D. J., Biao, Y. & Chongjiang, C. Protein corona formation around inorganic nanoparticles: food plant proteins-TiO2 nanoparticle interactions. Food Hydrocoll. 115, 106594 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).

  • Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023).

  • Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husted, S. et al. What is missing to advance foliar fertilization using nanotechnology? Trends Plant Sci. 28, 90–105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c05686 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci.: Nano 9, 2691–2703 (2022).

    CAS 

    Google Scholar
     

  • Zhu, L. et al. Cell wall pectin content refers to favored delivery of negatively charged carbon dots in leaf cells. ACS Nano 17, 23442–23454 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharkey, T. D. The discovery of rubisco. J. Exp. Bot. 74, 510–519 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swift, T. A. et al. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol. 229, 783–790 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Routier, C. et al. Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants’ CO2 uptake. ACS Nano 17, 3430–3441 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashiri, G. et al. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23, 1432 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sales, C. R. G., da Silva, A. B. & Carmo-Silva, E. Measuring Rubisco activity: challenges and opportunities of NADH-linked microtiter plate-based and 14C-based assays. J. Exp. Bot. 71, 5302–5312 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. X., Alom, M. S., Yadav, R. & Fitzkee, N. C. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nat. Commun. 13, 7313 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9, 5076 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poudel, S. et al. Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proc. Natl Acad. Sci. USA 117, 30451–30457 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payne, C. K. A protein corona primer for physical chemists. J. Chem. Phys. 151, 130901 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Association of heat-induced conformational change with activity loss of Rubisco. Biochem. Biophys. Res. Commun. 290, 1128–1132 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopac, T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: a critical review. Int. J. Biol. Macromol. 169, 290–301 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Botella, C., Jouhet, J. & Block, M. A. Importance of phosphatidylcholine on the chloroplast surface. Prog. Lipid Res. 65, 12–23 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reszczyńska, E. & Hanaka, A. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leibe, R. et al. Key role of choline head groups in large unilamellar phospholipid vesicles for the interaction with and rupture by silica nanoparticles. Small 19, e2207593 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ganguly, S. & Margel, S. Bioimaging probes based on magneto-fluorescent nanoparticles. Pharmaceutics 15, 686 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, K. N. L., Wheeler, K. E. & Murphy, C. J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles. Anal. Chem. 94, 4737–4746 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pu, S., Gong, C. & Robertson, A. W. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci. 7, 191204 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasteiger, E. et al. in The Proteomics Protocols Handbook 571–607 (Humana Press, 2005).

  • Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. & Hernandez, R. Construction of multiscale dissipative particle dynamics (DPD) models from other coarse-grained models. ACS Omega 9, 17667–17680 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, C. et al. Nanoscale iron (Fe3O4) surface charge controls Fusarium suppression and nutrient accumulation in tomato (Solanum lycopersicum L.). ACS Sustain. Chem. Eng. 12, 13285–13296 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self-assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J. Am. Chem. Soc. 141, 4316–4327 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan, S. & Tang, T. Martini coarse-grained model for polyethylenimine. J. Comput. Chem. 40, 607–618 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *