Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).
Hadjidemetriou, M. & Kostarelos, K. Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).
Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci.: Nano 8, 1067–1080 (2021).
Pinals, R. L., Chio, L., Ledesma, F. & Landry, M. P. Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst 145, 5090–5112 (2020).
Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020).
Yu, Y., Dai, W. & Luan, Y. Bio- and eco-corona related to plants: understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 317, 120784 (2023).
Kurepa, J., Shull, T. E. & Smalle, J. A. Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues. J. Nanobiotechnol. 18, 28 (2020).
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).
Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).
Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).
Lowry, G. V. et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19, 1255–1269 (2024).
Voke, E., Pinals, R. L., Goh, N. S. & Landry, M. P. In planta nanosensors: understanding biocorona formation for functional design. ACS Sens. 6, 2802–2814 (2021).
Bing, J., Xiao, X., McClements, D. J., Biao, Y. & Chongjiang, C. Protein corona formation around inorganic nanoparticles: food plant proteins-TiO2 nanoparticle interactions. Food Hydrocoll. 115, 106594 (2021).
Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).
Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).
Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).
Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).
Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023).
Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023).
Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).
Husted, S. et al. What is missing to advance foliar fertilization using nanotechnology? Trends Plant Sci. 28, 90–105 (2023).
Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c05686 (2023).
Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci.: Nano 9, 2691–2703 (2022).
Zhu, L. et al. Cell wall pectin content refers to favored delivery of negatively charged carbon dots in leaf cells. ACS Nano 17, 23442–23454 (2023).
Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).
Sharkey, T. D. The discovery of rubisco. J. Exp. Bot. 74, 510–519 (2023).
Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).
Swift, T. A. et al. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol. 229, 783–790 (2021).
Routier, C. et al. Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants’ CO2 uptake. ACS Nano 17, 3430–3441 (2023).
Bashiri, G. et al. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23, 1432 (2023).
Sales, C. R. G., da Silva, A. B. & Carmo-Silva, E. Measuring Rubisco activity: challenges and opportunities of NADH-linked microtiter plate-based and 14C-based assays. J. Exp. Bot. 71, 5302–5312 (2020).
Xu, J. X., Alom, M. S., Yadav, R. & Fitzkee, N. C. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nat. Commun. 13, 7313 (2022).
Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9, 5076 (2018).
Poudel, S. et al. Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proc. Natl Acad. Sci. USA 117, 30451–30457 (2020).
Payne, C. K. A protein corona primer for physical chemists. J. Chem. Phys. 151, 130901 (2019).
Li, G. et al. Association of heat-induced conformational change with activity loss of Rubisco. Biochem. Biophys. Res. Commun. 290, 1128–1132 (2002).
Kopac, T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: a critical review. Int. J. Biol. Macromol. 169, 290–301 (2021).
Botella, C., Jouhet, J. & Block, M. A. Importance of phosphatidylcholine on the chloroplast surface. Prog. Lipid Res. 65, 12–23 (2017).
Reszczyńska, E. & Hanaka, A. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414 (2020).
Leibe, R. et al. Key role of choline head groups in large unilamellar phospholipid vesicles for the interaction with and rupture by silica nanoparticles. Small 19, e2207593 (2023).
Ganguly, S. & Margel, S. Bioimaging probes based on magneto-fluorescent nanoparticles. Pharmaceutics 15, 686 (2023).
Hoang, K. N. L., Wheeler, K. E. & Murphy, C. J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles. Anal. Chem. 94, 4737–4746 (2022).
Pu, S., Gong, C. & Robertson, A. W. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci. 7, 191204 (2020).
Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).
Gasteiger, E. et al. in The Proteomics Protocols Handbook 571–607 (Humana Press, 2005).
Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).
Wang, Y. & Hernandez, R. Construction of multiscale dissipative particle dynamics (DPD) models from other coarse-grained models. ACS Omega 9, 17667–17680 (2024).
Deng, C. et al. Nanoscale iron (Fe3O4) surface charge controls Fusarium suppression and nutrient accumulation in tomato (Solanum lycopersicum L.). ACS Sustain. Chem. Eng. 12, 13285–13296 (2024).
Wu, M. et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self-assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J. Am. Chem. Soc. 141, 4316–4327 (2019).
Mahajan, S. & Tang, T. Martini coarse-grained model for polyethylenimine. J. Comput. Chem. 40, 607–618 (2019).