High-fidelity single-spin shuttling in silicon


  • Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q. et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat. Phys. https://doi.org/10.1038/s41567-024-02479-z (2024).

  • Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dijkema, J. et al. Cavity-mediated iSWAP oscillations between distant spins. Nat. Phys. 21, 168–174 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandersypen, L. M. K. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. Today 72, 38–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electronics 2, 151–158 (2019).

    Article 

    Google Scholar
     

  • Lawrie, W. I. L. et al. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nat. Commun.14, 3617 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Science Advances 8, 5130 (2022).

    Article 

    Google Scholar
     

  • Tanttu, T. et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nat. Phys. https://doi.org/10.1038/s41567-024-02614-w (2024).

  • Undseth, B. et al. Hotter is easier: unexpected temperature dependence of spin qubit frequencies. Phys. Rev. X 13, 041015 (2023).

    CAS 

    Google Scholar
     

  • Huang, J. Y. et al. High-fidelity spin qubit operation and algorithmic initialization above 1 K. Nature 627, 772–777 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electronics 5, 184–190 (2022).

    Article 

    Google Scholar
     

  • Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

    Article 

    Google Scholar
     

  • Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, 3960 (2018).

    Article 

    Google Scholar
     

  • Boter, J. M. et al. Spiderweb array: a sparse spin-qubit array. Phys. Rev. Appl. 18, 024053 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jnane, H., Undseth, B., Cai, Z., Benjamin, S. C. & Koczor, B. Multicore quantum computing. Phys. Rev. Appl. 18, 044064 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Künne, M. et al. The SpinBus architecture for scaling spin qubits with electron shuttling. Nat. Commun. 15, 4977 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterk, J. D. et al. Closed-loop optimization of fast trapped-ion shuttling with sub-quanta excitation. npj Quant. Inf. 8, 68 (2022).

    Article 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baart, T. A. et al. Single-spin CCD. Nat. Nanotechnol. 11, 330–334 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwerver, A. et al. Shuttling an electron spin through a silicon quantum dot array. PRX Quant. 4, 030303 (2023).

    Article 

    Google Scholar
     

  • Noiri, A. et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors. Nat. Commun. 13, 5740 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, T., Baart, T. A., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent shuttle of electron-spin states. npj Quant. Inf. 3, 22 (2017).

    Article 

    Google Scholar
     

  • Flentje, H. et al. Coherent long-distance displacement of individual electron spins. Nat. Commun. 8, 501 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, N. D., Henshaw, J. D., Rudolph, M., Luhman, D. R. & Jock, R. M. Dephasing and error dynamics affecting a singlet-triplet qubit during coherent spin shuttling. npj Quant. Inf. 11, 63 (2025).

    Article 

    Google Scholar
     

  • van Riggelen-Doelman, F. et al. Coherent spin qubit shuttling through germanium quantum dots. Nat. Commun. 15, 5716 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C.-A. et al. Operating semiconductor quantum processors with hopping spins. Science 385, 447–452 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNeil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

  • Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, R. et al. Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function. Nat. Commun. 15, 2296 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadot, B. et al. Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Struck, T. et al. Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe. Nat. Commun. 15, 1325 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obata, T. et al. Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet. Phys. Rev. B 81, 085317 (2010).

    Article 

    Google Scholar
     

  • Feng, M. et al. Control of dephasing in spin qubits during coherent transport in silicon. Phys. Rev. B 107, 085427 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Krzywda, J. A. & Cywiński, Ł. Interplay of charge noise and coupling to phonons in adiabatic electron transfer between quantum dots. Phys. Rev. B 104, 075439 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Langrock, V. et al. Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered Si/SiGe/SiO2. PRX Quant. 4, 020305 (2023).

    Article 

    Google Scholar
     

  • Seidler, I. et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture. npj Quant. Inf. 8, 100 (2022).

    Article 

    Google Scholar
     

  • Mortemousque, P.-A. et al. Enhanced spin coherence while displacing electron in a two-dimensional array of quantum dots. PRX Quant. 2, 030331 (2021).

    Article 

    Google Scholar
     

  • Hansen, N. in Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms (eds Lozano, J. A. et al.) 75–102 (Springer, 2006).

  • Volmer, M. et al. Mapping of valley splitting by conveyor-mode spin-coherent electron shuttling. npj Quant. Inf. 10, 61 (2024).

    Article 

    Google Scholar
     

  • Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. Nature 629, 80–85 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

    CAS 

    Google Scholar
     

  • De Smet, M. et al. Data and analysis underlying high-fidelity single-spin shuttling in silicon. Zenodo https://doi.org/10.5281/zenodo.10834810 (2024).

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *