Harnessing intracellular bacteria in bladder by intravesical delivery of antibiotics-loaded nanodiamonds to reduce the recurrence of urinary tract infection | Journal of Nanobiotechnology


  • Sánchez SV, Navarro N, Catalán-Figueroa J, Morales JO. Nanoparticles as potential novel therapies for urinary tract infections. Front Cell Infect Microbiol. 2021;11:656496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CDC. Urinary tract infection (catheter-associated urinary tract infection [CAUTI] and non-catheter-associated urinary tract infection [UTI]) events. 2023.

  • Newlands AF, Roberts L, Maxwell K, Kramer M, Price JL, Finlay KA. The recurrent urinary tract infection symptom scale: development and validation of a patient-reported outcome measure. BJUI Compass. 2023;4(3):285–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health. 2022;10.

  • Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kucheria R, Dasgupta P, Sacks S, Khan M, Sheerin N. Urinary tract infections: new insights into a common problem. Postgrad Med J. 2005;81(952):83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Wei H, Zhao Y, Shang L, Di L, Lyu C, et al. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosnian J Basic Med Sci. 2019;19(1):86.

    Article 
    CAS 

    Google Scholar
     

  • Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol. 2020;18(4):211–26.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15(10):655–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science. 1998;282(5393):1494–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 2007;9(9):2230–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Forbes R, Ali A, Abouhajar A, Brennand C, Brown H, Carnell S, et al. ALternatives to prophylactic antibiotics for the treatment of recurrent urinary tract infection in women (ALTAR): study protocol for a multicentre, pragmatic, patient-randomised, non-inferiority trial. Trials. 2018;19:1–19.

    Article 

    Google Scholar
     

  • Albert X, Huertas I, Pereiro I, Sanfélix J, Gosalbes V, Perrotta C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Reviews. 2004(3).

  • Fisher H, Oluboyede Y, Chadwick T, Abdel-Fattah M, Brennand C, Fader M, et al. Continuous low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis. 2018;18(9):957–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Translational Med. 2019;4(3):e10143.

  • Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Kumari A, Kumar V, Yadav SK. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012;7(2):34–42.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article 

    Google Scholar
     

  • Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater. 1999;194(1–3):176–84.

    Article 
    CAS 

    Google Scholar
     

  • Cui X, Pei R, Wang Z, Yang F, Ma Y, Dong S, et al. Layer-by-layer assembly of multilayer films composed of Avidin and biotin-labeled antibody for Immunosensing. Biosens Bioelectron. 2003;18(1):59–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated delivery of Recombinant AAV vectors in vitro and in vivo. Mol Ther. 2000;1(5):S293.


    Google Scholar
     

  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2(1):1–6.

    Article 

    Google Scholar
     

  • Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand J-P, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with Thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb Drug Resist. 2019;25(7):966–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112(5):841–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial activity of Ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomedical Mater Res Part B: Appl Biomaterials. 2010;93(2):557–61.

    Article 

    Google Scholar
     

  • Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting Vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261–3.

    Article 
    CAS 

    Google Scholar
     

  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Engineering: C. 2014;44:278–84.

    Article 
    CAS 

    Google Scholar
     

  • Malarkodi C, Rajeshkumar S. In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens. Inorg Nano-Metal Chem. 2017;47(9):1290–7.

    Article 
    CAS 

    Google Scholar
     

  • Mishra MP, Padhy RN. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Appl Biomed. 2018;16(2):120–5.

    Article 

    Google Scholar
     

  • Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, et al. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep. 2023;13(1):14972.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol in Vitro. 2015;29(3):502–11.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jacobsen NR, Stoeger T, Van Den Brûle S, Saber AT, Beyerle A, Vietti G, et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol. 2015;85:84–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen T, Chernysheva MG, Badun GA, Popov AG, Egorov AV, Anuchina NM, et al. Levofloxacin and Amikacin adsorption on nanodiamonds: mechanism and application prospects. Colloids Interfaces. 2022;6(2):35.

    Article 
    CAS 

    Google Scholar
     

  • Giammarco J, Mochalin VN, Haeckel J, Gogotsi Y. The adsorption of Tetracycline and Vancomycin onto nanodiamond with controlled release. J Colloid Interface Sci. 2016;468:253–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE. 2018;13(1):e0191020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barras A, Martin FA, Bande O, Baumann J-S, Ghigo J-M, Boukherroub R, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Turcheniuk V, Raks V, Issa R, Cooper IR, Cragg PJ, Jijie R, et al. Antimicrobial activity of menthol modified nanodiamond particles. Diam Relat Mater. 2015;57:2–8.

    Article 
    CAS 

    Google Scholar
     

  • Rouhani P, Singh RN. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin delivery. J Nanosci Nanotechnol. 2020;20(7):3957–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee D-K, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang C-Y, et al. Nanodiamond–gutta percha composite biomaterials for root Canal therapy. ACS Nano. 2015;9(11):11490–501.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee D-K, Kee T, Liang Z, Hsiou D, Miya D, Wu B, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci. 2017;114(45):E9445–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang D, Tong Y, Li Y, Tian Z, Cao R, Yang B. PEGylated nanodiamond for chemotherapeutic drug delivery. Diam Relat Mater. 2013;36:26–34.

    Article 

    Google Scholar
     

  • Gwak R, Lee G-J, Kim H, Lee M-K, Rhee C-K, Dae-Ro C, et al. Efficient doxorubicin delivery using deaggregated and carboxylated nanodiamonds for cancer cell therapy. Nanosci Nanatechnol Lett. 2015;7(9):723–8.

    Article 

    Google Scholar
     

  • Norouzi N, Ong Y, Damle VG, Najafi MBH, Schirhagl R. Effect of medium and aggregation on antibacterial activity of nanodiamonds. Mater Sci Engineering: C. 2020;112:110930.

    Article 
    CAS 

    Google Scholar
     

  • Chang BM, Lin HH, Su LJ, Lin WD, Lin RJ, Tzeng YK, et al. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv Funct Mater. 2013;23(46):5737–45.

    Article 
    CAS 

    Google Scholar
     

  • Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(10):2262–5.

    Article 
    CAS 

    Google Scholar
     

  • Leung HM, Lau CH, Ho JW-T, Chan MS, Chang TJH, Law LH, et al. Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood–brain barrier. Nanoscale. 2021;13(5):3184–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of Oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol. 2004;38(15):4097–105.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, et al. Fluorescent nanodiamonds for tracking single polymer particles in cells and tissues. Anal Chem. 2023;95(35):13046–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal – endosomal escape in fluorescent nanodiamonds in different cells. Nanoscale. 2021;13(31):13294–300.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Prabhakar N, Khan MH, Peurla M, Chang H-C, Hänninen PE, Rosenholm JM. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11(1):50–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wurpel DJ, Totsika M, Allsopp LP, Hartley-Tassell LE, Day CJ, Peters KM, et al. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PLoS ONE. 2014;9(3):e93177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci. 2002;99(26):17020–4.

  • Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr C-M, et al. Minimum information for conducting and reporting in vitro intracellular infection assays. ACS Infect Dis. 2024;10(2):337–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Meier C, Oelschlaeger TA, Merkert H, Korhonen TK, Hacker J. Ability of the newborn meningitis isolate Escherichia coli IHE3034 (O18: K1: H7) to invade epithelial and endothelial cells. Infect Immun. 1996;64:2391–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991;10:100–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hardie J, Makabenta JM, Gupta A, Huang R, Cao-Milán R, Goswami R, et al. Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes. Mater Horiz. 2022;9(5):1489–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang L, Greene MK, Insua JL, Pessoa JS, Small DM, Smyth P, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Controlled Release. 2018;279:316–25.

    Article 
    CAS 

    Google Scholar
     

  • Qi H, Shan P, Wang Y, Li P, Wang K, Yang L. Nanomedicines for the efficient treatment of intracellular bacteria: the ART principle. Front Chem. 2021;9:775682.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, et al. Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. MBio. 2020;11(2):10–1128.

    Article 

    Google Scholar
     

  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. 2018;31(1):10–1128.

    Article 

    Google Scholar
     

  • Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bongers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiu Y, Hou Y, Sun F, Chen P, Wang D, Mu H, et al. Hyaluronic acid conjugation facilitates clearance of intracellular bacterial infections by streptomycin with neglectable nephrotoxicity. Glycobiology. 2017;27(9):861–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pearson JC, Gillett E, Gadri ND, Dionne B. Tetracyclines, the old and the new: A narrative review. CMI Commun. 2025;2(1):105059.

  • Musher DM, Minuth JN, Thorsteinsson SB, Holmes T. Effectiveness of achievable urinary concentrations of tetracyclines against Tetracycllne-Reslstant pathogenic Bacteria. J Infect Dis. 1975;131(Supplement):S40–4.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenstock J, Smith LP, Gurney M, Lee K, Weinberg WG, Longfield JN, et al. Comparison of single-dose Tetracycline hydrochloride to conventional therapy of urinary tract infections. Antimicrob Agents Chemother. 1985;27(4):652–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mawabo IK, Noumedem JAK, Kuiate JR, Kuete V. Tetracycline improved the efficiency of other antimicrobials against gram-negative multidrug-resistant bacteria. J Infect Public Health. 2015;8(3):226–33.

    Article 
    PubMed 

    Google Scholar
     

  • Olajuyigbe OO. Synergistic influence of Tetracycline on the antibacterial activities of amoxicillin against resistant bacteria. J Pharm Allied Health Sci. 2012;2(1):12–20.


    Google Scholar
     

  • He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, et al. A biodegradable antibacterial alginate/carboxymethyl Chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol. 2021;167:182–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hao Y, Zheng W, Sun Z, Zhang D, Sui K, Shen P, et al. Marine polysaccharide-based composite hydrogels containing fucoidan: preparation, physicochemical characterization, and biocompatible evaluation. Int J Biol Macromol. 2021;183:1978–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, et al. Light-Activated Nanodiamond-Based drug delivery systems for Spatiotemporal release of antisense oligonucleotides. Bioconjug Chem. 2024;35(5):623–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, et al. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chem Commun. 2016;52(37):6265–8.

    Article 
    CAS 

    Google Scholar
     

  • Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface Charge-Switching polymeric nanoparticles for bacterial cell Wall-Targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE. 2021;16(9):e0256748.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated urinary tract infections: the molecular basis for challenges to effective treatment. Microorganisms [Internet]. 2023;11(9).

  • Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007;4(12):e329.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klumpp David J, Rycyk Matthew T, Chen Michael C, Thumbikat P, Sengupta S, Schaeffer Anthony J. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun. 2006;74(9):5106–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu Y, Weil T. Nanodiamonds for biological applications. Phys Sci Reviews. 2017;2(6).

  • Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100.

    Article 
    CAS 

    Google Scholar
     

  • Miao C, Zhang Y, Liu G, Yang J, Yu K, Lv J, et al. Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon Dots. Biomaterials. 2024;308:122547.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204.

    Article 
    PubMed 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32(1):659–702.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leucocyte Biology. 2007;82(6):1375–81.

    Article 

    Google Scholar
     

  • Jiang Y-H, Peng C-H, Liu H-T, Kuo H-C. Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS ONE. 2013;8(10):e76779.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martins SM, Darlin DJ, Lad PM, Zimmern PE. Interleukin-1B: a clinically relevant urinary marker. J Urol. 1994;151(5):1198–201.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nielubowicz GR, Mobley HLT. Host–pathogen interactions in urinary tract infection. Nat Reviews Urol. 2010;7(8):430–41.

    Article 
    CAS 

    Google Scholar
     

  • Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, et al. Interleukin-6 gets involved in response to bacterial infection and promotes antibody production in nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2018;89:141–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao YQ, Mantyh PW, Carlson EJ, Gillespie A-M, Epstein CJ, Basbaum AI. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 1998;392(6674):390–4.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cuesta MC, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide increase IL-1β, IL-6 and TNFα secretion from human peripheral blood mononuclear cells. Neurochem Int. 2002;40(4):301–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rameshwar P, Ganea D, Gascon P. In vitro stimulatory effect of substance P on hematopoiesis. 1993.

  • Lotz M, Vaughan JH, Carson DA. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science. 1988;241(4870):1218–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Körner H, Liu X. Susceptibility to intracellular infections: contributions of TNF to immune defense. Front Microbiol. 2020;11:1643.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Febriza A, Natzir R, Hatta M, As’ad S, Budu B, Kaelan C, et al. The role of IL-6, TNF-α, and VDR in inhibiting the growth of Salmonella typhi: In vivo study. Open Microbiol J. 2020;14:65–71.

  • Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathog. 2016;12(12):e1005973.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, et al. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci. 2021;118(51):e2113951118.

  • Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiot [Internet]. 2020;9(4).

  • Handel A, Margolis E, Levin BR. Exploring the role of the immune response in preventing antibiotic resistance. J Theor Biol. 2009;256(4):655–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-Positive bacterial infections. Clin Infect Dis. 2004;38(6):864–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A. 2000;97(16):8829– 35.

  • Mctaggart LA, Rigby RC, Elliott TSJ. The pathogenesis of urinary tract infections associated with Escherichia coli, Staphylococcus Saprophyticus and S. Epidermidis. J Med Microbiol. 1990;32(2):135–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fukushi Y, Orikasa S, Kagayama M. An electron microscopic study of the interaction between vesical epitherlium and E. Coli Invest Urol. 1979;17(1):61–8.

    PubMed 
    CAS 

    Google Scholar
     

  • Kates M, Date A, Yoshida T, Afzal U, Kanvinde P, Babu T, et al. Preclinical evaluation of intravesical cisplatin nanoparticles for non–muscle-invasive bladder cancer. Clin Cancer Res. 2017;23(21):6592–601.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *