Sánchez SV, Navarro N, Catalán-Figueroa J, Morales JO. Nanoparticles as potential novel therapies for urinary tract infections. Front Cell Infect Microbiol. 2021;11:656496.
CDC. Urinary tract infection (catheter-associated urinary tract infection [CAUTI] and non-catheter-associated urinary tract infection [UTI]) events. 2023.
Newlands AF, Roberts L, Maxwell K, Kramer M, Price JL, Finlay KA. The recurrent urinary tract infection symptom scale: development and validation of a patient-reported outcome measure. BJUI Compass. 2023;4(3):285–97.
Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health. 2022;10.
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566.
Kucheria R, Dasgupta P, Sacks S, Khan M, Sheerin N. Urinary tract infections: new insights into a common problem. Postgrad Med J. 2005;81(952):83.
Wang M, Wei H, Zhao Y, Shang L, Di L, Lyu C, et al. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosnian J Basic Med Sci. 2019;19(1):86.
Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol. 2020;18(4):211–26.
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.
Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15(10):655–63.
Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science. 1998;282(5393):1494–7.
Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 2007;9(9):2230–41.
Forbes R, Ali A, Abouhajar A, Brennand C, Brown H, Carnell S, et al. ALternatives to prophylactic antibiotics for the treatment of recurrent urinary tract infection in women (ALTAR): study protocol for a multicentre, pragmatic, patient-randomised, non-inferiority trial. Trials. 2018;19:1–19.
Albert X, Huertas I, Pereiro I, Sanfélix J, Gosalbes V, Perrotta C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Reviews. 2004(3).
Fisher H, Oluboyede Y, Chadwick T, Abdel-Fattah M, Brennand C, Fader M, et al. Continuous low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis. 2018;18(9):957–68.
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Translational Med. 2019;4(3):e10143.
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12.
Kumari A, Kumar V, Yadav SK. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012;7(2):34–42.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.
Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater. 1999;194(1–3):176–84.
Cui X, Pei R, Wang Z, Yang F, Ma Y, Dong S, et al. Layer-by-layer assembly of multilayer films composed of Avidin and biotin-labeled antibody for Immunosensing. Biosens Bioelectron. 2003;18(1):59–67.
Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated delivery of Recombinant AAV vectors in vitro and in vivo. Mol Ther. 2000;1(5):S293.
Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2(1):1–6.
Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand J-P, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961–6.
Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with Thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb Drug Resist. 2019;25(7):966–74.
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112(5):841–52.
Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial activity of Ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomedical Mater Res Part B: Appl Biomaterials. 2010;93(2):557–61.
Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting Vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261–3.
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):292.
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Engineering: C. 2014;44:278–84.
Malarkodi C, Rajeshkumar S. In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens. Inorg Nano-Metal Chem. 2017;47(9):1290–7.
Mishra MP, Padhy RN. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Appl Biomed. 2018;16(2):120–5.
Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, et al. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep. 2023;13(1):14972.
Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol in Vitro. 2015;29(3):502–11.
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116–27.
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974.
Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102.
Jacobsen NR, Stoeger T, Van Den Brûle S, Saber AT, Beyerle A, Vietti G, et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol. 2015;85:84–95.
Shen T, Chernysheva MG, Badun GA, Popov AG, Egorov AV, Anuchina NM, et al. Levofloxacin and Amikacin adsorption on nanodiamonds: mechanism and application prospects. Colloids Interfaces. 2022;6(2):35.
Giammarco J, Mochalin VN, Haeckel J, Gogotsi Y. The adsorption of Tetracycline and Vancomycin onto nanodiamond with controlled release. J Colloid Interface Sci. 2016;468:253–61.
Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.
Iyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE. 2018;13(1):e0191020.
Barras A, Martin FA, Bande O, Baumann J-S, Ghigo J-M, Boukherroub R, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–16.
Turcheniuk V, Raks V, Issa R, Cooper IR, Cragg PJ, Jijie R, et al. Antimicrobial activity of menthol modified nanodiamond particles. Diam Relat Mater. 2015;57:2–8.
Rouhani P, Singh RN. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin delivery. J Nanosci Nanotechnol. 2020;20(7):3957–70.
Lee D-K, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang C-Y, et al. Nanodiamond–gutta percha composite biomaterials for root Canal therapy. ACS Nano. 2015;9(11):11490–501.
Lee D-K, Kee T, Liang Z, Hsiou D, Miya D, Wu B, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci. 2017;114(45):E9445–54.
Wang D, Tong Y, Li Y, Tian Z, Cao R, Yang B. PEGylated nanodiamond for chemotherapeutic drug delivery. Diam Relat Mater. 2013;36:26–34.
Gwak R, Lee G-J, Kim H, Lee M-K, Rhee C-K, Dae-Ro C, et al. Efficient doxorubicin delivery using deaggregated and carboxylated nanodiamonds for cancer cell therapy. Nanosci Nanatechnol Lett. 2015;7(9):723–8.
Norouzi N, Ong Y, Damle VG, Najafi MBH, Schirhagl R. Effect of medium and aggregation on antibacterial activity of nanodiamonds. Mater Sci Engineering: C. 2020;112:110930.
Chang BM, Lin HH, Su LJ, Lin WD, Lin RJ, Tzeng YK, et al. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv Funct Mater. 2013;23(46):5737–45.
Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(10):2262–5.
Leung HM, Lau CH, Ho JW-T, Chan MS, Chang TJH, Law LH, et al. Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood–brain barrier. Nanoscale. 2021;13(5):3184–93.
Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of Oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol. 2004;38(15):4097–105.
Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, et al. Fluorescent nanodiamonds for tracking single polymer particles in cells and tissues. Anal Chem. 2023;95(35):13046–54.
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal – endosomal escape in fluorescent nanodiamonds in different cells. Nanoscale. 2021;13(31):13294–300.
Prabhakar N, Khan MH, Peurla M, Chang H-C, Hänninen PE, Rosenholm JM. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–93.
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11(1):50–61.
Wurpel DJ, Totsika M, Allsopp LP, Hartley-Tassell LE, Day CJ, Peters KM, et al. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PLoS ONE. 2014;9(3):e93177.
Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci. 2002;99(26):17020–4.
Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr C-M, et al. Minimum information for conducting and reporting in vitro intracellular infection assays. ACS Infect Dis. 2024;10(2):337–49.
Meier C, Oelschlaeger TA, Merkert H, Korhonen TK, Hacker J. Ability of the newborn meningitis isolate Escherichia coli IHE3034 (O18: K1: H7) to invade epithelial and endothelial cells. Infect Immun. 1996;64:2391–9.
Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991;10:100–6.
Hardie J, Makabenta JM, Gupta A, Huang R, Cao-Milán R, Goswami R, et al. Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes. Mater Horiz. 2022;9(5):1489–94.
Jiang L, Greene MK, Insua JL, Pessoa JS, Small DM, Smyth P, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Controlled Release. 2018;279:316–25.
Qi H, Shan P, Wang Y, Li P, Wang K, Yang L. Nanomedicines for the efficient treatment of intracellular bacteria: the ART principle. Front Chem. 2021;9:775682.
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, et al. Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. MBio. 2020;11(2):10–1128.
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034.
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. 2018;31(1):10–1128.
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147–71.
Bongers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.
Qiu Y, Hou Y, Sun F, Chen P, Wang D, Mu H, et al. Hyaluronic acid conjugation facilitates clearance of intracellular bacterial infections by streptomycin with neglectable nephrotoxicity. Glycobiology. 2017;27(9):861–7.
Pearson JC, Gillett E, Gadri ND, Dionne B. Tetracyclines, the old and the new: A narrative review. CMI Commun. 2025;2(1):105059.
Musher DM, Minuth JN, Thorsteinsson SB, Holmes T. Effectiveness of achievable urinary concentrations of tetracyclines against Tetracycllne-Reslstant pathogenic Bacteria. J Infect Dis. 1975;131(Supplement):S40–4.
Rosenstock J, Smith LP, Gurney M, Lee K, Weinberg WG, Longfield JN, et al. Comparison of single-dose Tetracycline hydrochloride to conventional therapy of urinary tract infections. Antimicrob Agents Chemother. 1985;27(4):652–4.
Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.
Mawabo IK, Noumedem JAK, Kuiate JR, Kuete V. Tetracycline improved the efficiency of other antimicrobials against gram-negative multidrug-resistant bacteria. J Infect Public Health. 2015;8(3):226–33.
Olajuyigbe OO. Synergistic influence of Tetracycline on the antibacterial activities of amoxicillin against resistant bacteria. J Pharm Allied Health Sci. 2012;2(1):12–20.
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, et al. A biodegradable antibacterial alginate/carboxymethyl Chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol. 2021;167:182–92.
Hao Y, Zheng W, Sun Z, Zhang D, Sui K, Shen P, et al. Marine polysaccharide-based composite hydrogels containing fucoidan: preparation, physicochemical characterization, and biocompatible evaluation. Int J Biol Macromol. 2021;183:1978–86.
Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, et al. Light-Activated Nanodiamond-Based drug delivery systems for Spatiotemporal release of antisense oligonucleotides. Bioconjug Chem. 2024;35(5):623–32.
Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, et al. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chem Commun. 2016;52(37):6265–8.
Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface Charge-Switching polymeric nanoparticles for bacterial cell Wall-Targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.
Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE. 2021;16(9):e0256748.
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated urinary tract infections: the molecular basis for challenges to effective treatment. Microorganisms [Internet]. 2023;11(9).
Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007;4(12):e329.
Klumpp David J, Rycyk Matthew T, Chen Michael C, Thumbikat P, Sengupta S, Schaeffer Anthony J. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun. 2006;74(9):5106–13.
Wu Y, Weil T. Nanodiamonds for biological applications. Phys Sci Reviews. 2017;2(6).
Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100.
Miao C, Zhang Y, Liu G, Yang J, Yu K, Lv J, et al. Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon Dots. Biomaterials. 2024;308:122547.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204.
Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66.
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32(1):659–702.
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.
Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leucocyte Biology. 2007;82(6):1375–81.
Jiang Y-H, Peng C-H, Liu H-T, Kuo H-C. Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS ONE. 2013;8(10):e76779.
Martins SM, Darlin DJ, Lad PM, Zimmern PE. Interleukin-1B: a clinically relevant urinary marker. J Urol. 1994;151(5):1198–201.
March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7.
Nielubowicz GR, Mobley HLT. Host–pathogen interactions in urinary tract infection. Nat Reviews Urol. 2010;7(8):430–41.
Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, et al. Interleukin-6 gets involved in response to bacterial infection and promotes antibody production in nile tilapia (Oreochromis niloticus). Dev Comp Immunol. 2018;89:141–51.
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
Cao YQ, Mantyh PW, Carlson EJ, Gillespie A-M, Epstein CJ, Basbaum AI. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 1998;392(6674):390–4.
Cuesta MC, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide increase IL-1β, IL-6 and TNFα secretion from human peripheral blood mononuclear cells. Neurochem Int. 2002;40(4):301–6.
Rameshwar P, Ganea D, Gascon P. In vitro stimulatory effect of substance P on hematopoiesis. 1993.
Lotz M, Vaughan JH, Carson DA. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science. 1988;241(4870):1218–21.
Li X, Körner H, Liu X. Susceptibility to intracellular infections: contributions of TNF to immune defense. Front Microbiol. 2020;11:1643.
Febriza A, Natzir R, Hatta M, As’ad S, Budu B, Kaelan C, et al. The role of IL-6, TNF-α, and VDR in inhibiting the growth of Salmonella typhi: In vivo study. Open Microbiol J. 2020;14:65–71.
Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathog. 2016;12(12):e1005973.
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, et al. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci. 2021;118(51):e2113951118.
Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiot [Internet]. 2020;9(4).
Handel A, Margolis E, Levin BR. Exploring the role of the immune response in preventing antibiotic resistance. J Theor Biol. 2009;256(4):655–62.
Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-Positive bacterial infections. Clin Infect Dis. 2004;38(6):864–70.
Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A. 2000;97(16):8829– 35.
Mctaggart LA, Rigby RC, Elliott TSJ. The pathogenesis of urinary tract infections associated with Escherichia coli, Staphylococcus Saprophyticus and S. Epidermidis. J Med Microbiol. 1990;32(2):135–41.
Fukushi Y, Orikasa S, Kagayama M. An electron microscopic study of the interaction between vesical epitherlium and E. Coli Invest Urol. 1979;17(1):61–8.
Kates M, Date A, Yoshida T, Afzal U, Kanvinde P, Babu T, et al. Preclinical evaluation of intravesical cisplatin nanoparticles for non–muscle-invasive bladder cancer. Clin Cancer Res. 2017;23(21):6592–601.