From bench to bedside: the research status and application opportunity of extracellular vesicles and their engineering strategies in the treatment of skin defects | Journal of Nanobiotechnology


  • Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Controlled Release. 2023;353:1127–49.

    Article 
    CAS 

    Google Scholar
     

  • Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 2019;94:482–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115(19):11147–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Psaraki A, Ntari L, Karakostas C, Korrou-Karava D, Roubelakis MG. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatol Baltim Md. 2022;75(6):1590–603.

    Article 
    CAS 

    Google Scholar
     

  • Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater. 2022;10:281–94.

    CAS 
    PubMed 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020;21(2):665.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Wang Q, Wei X, Shao J, Zhao J, Zhang Z, et al. Global scientific trends on exosome research during 2007–2016: a bibliometric analysis. Oncotarget. 2017;8(29):48460–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007;1(2):129–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, et al. Exosomes and their therapeutic potentials of stem cells. Stem Cells Int. 2016;2016:7653489.

    Article 
    PubMed 

    Google Scholar
     

  • Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9(1):187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells Dayt Ohio. 2017;35(4):851–8.

    Article 
    CAS 

    Google Scholar
     

  • Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing exosomes for the development of brain drug delivery systems. Bioconjug Chem. 2019;30(4):994–1005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang XJ, Xiao JJ, Liu L, Jiao HC, Lin H. Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Biosci Rep. 2017;37(6):BSR201756.

    Article 

    Google Scholar
     

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20(3):291–301.

    Article 
    PubMed 

    Google Scholar
     

  • Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):E789.

    Article 

    Google Scholar
     

  • Ooi K. Protection of the skin barrier function in inflammatory disease. Yakugaku Zasshi. 2019;139(12):1553–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160(2):116–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):E1169.

    Article 

    Google Scholar
     

  • da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-based strategies to advance therapies for chronic skin wounds. Annu Rev Biomed Eng. 2019;4(21):145–69.

    Article 

    Google Scholar
     

  • Prachand VN, Milner R, Angelos P, Posner MC, Fung JJ, Agrawal N, et al. Medically necessary, time-sensitive procedures: scoring system to ethically and efficiently manage resource scarcity and provider risk during the COVID-19 pandemic. J Am Coll Surg. 2020;231(2):281–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogers LC, Armstrong DG, Capotorto J, Fife CE, Garcia JR, Gelly H, et al. Wound center without walls: the new model of providing care during the COVID-19 pandemic. Wounds Compend Clin Res Pract. 2020;32(7):178–85.


    Google Scholar
     

  • Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun. 2013;438(2):410–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178:113961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynolds JL, Mahajan SD. Transmigration of tetraspanin 2 (Tspan2) siRNA via microglia derived exosomes across the blood brain barrier modifies the production of immune mediators by microglia cells. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2020;15(3):554–63.

    Article 

    Google Scholar
     

  • Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 2018;36(1):328–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vu NB, Nguyen HT, Palumbo R, Pellicano R, Fagoonee S, Pham PV. Stem cell-derived exosomes for wound healing: current status and promising directions. Minerva Med. 2021;112(3):384–400.

    Article 
    PubMed 

    Google Scholar
     

  • Jella K, Nasti T, Li Z, Malla S, Buchwald Z, Khan M. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines. 2018;6(4):69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma S, Liu X, Yin J, Hao L, Diao Y, Zhong J. Exosomes and autophagy in ocular surface and retinal diseases: new insights into pathophysiology and treatment. Stem Cell Res Ther. 2022;13(1):174.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai AK, Johnson PJ. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc Natl Acad Sci. 2019;116(43):21354–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Controll Release. 2017;266:100–8.

    Article 
    CAS 

    Google Scholar
     

  • Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex. ESCRT-I Cell. 2001;106(2):145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34(19):2398–407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou W, Lai M, Zhang Y, Zheng L, Xing Z, Li T, et al. Exosome release is regulated by mTORC1. Adv Sci. 2019;6(3):1801313.

    Article 

    Google Scholar
     

  • Lauwers E, Wang YC, Gallardo R, Van Der Kant R, Michiels E, Swerts J, et al. Hsp90 mediates membrane deformation and exosome release. Mol Cell. 2018;71(5):689-702.e9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;23(4):452–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Jin K, Gao L, Zhang Z, Li F, Zhou F, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021.

    Article 

    Google Scholar
     

  • Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology. 2018;16(1):81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konoshenko MYu, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018;2018:1–27.

    Article 

    Google Scholar
     

  • He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019;9(2019):1–16.


    Google Scholar
     

  • Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74(5):1844–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3.22.1-3.22.29.

    Article 

    Google Scholar
     

  • Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically-active exosomes from human plasma. J Immunol Methods. 2014;411:55–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiemstra TF, Charles PD, Gracia T, Hester SS, Gatto L, Al-Lamki R, et al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol. 2014;25(9):2017–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5(1):17319.

    Article 
    PubMed 

    Google Scholar
     

  • Langevin SM, Kuhnell D, Orr-Asman MA, Biesiada J, Zhang X, Medvedovic M, et al. Balancing yield, purity and practicality: a modified differential ultracentrifugation protocol for efficient isolation of small extracellular vesicles from human serum. RNA Biol. 2019;16(1):5–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia BS, Low YP, Wang Q, Li P, Gao Z. Advances in exosome quantification techniques. TRAC Trends Anal Chem. 2017;86:93–106.

    Article 
    CAS 

    Google Scholar
     

  • Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 2019;9(23):6901–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuldner M, Dörsam B, Shatnyeva O, Reiners KS, Kubarenko A, Hansen HP, et al. Exosome-dependent immune surveillance at the metastatic niche requires BAG6 and CBP/p300-dependent acetylation of p53. Theranostics. 2019;9(21):6047–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-González R, Gauthier SA, Kumar A, Saito M, Saito M, Levy E. A method for isolation of extracellular vesicles and characterization of exosomes from brain extracellular space. Methods Mol Biol. 2017;1545:139–51.

    Article 
    PubMed 

    Google Scholar
     

  • Street JM, Koritzinsky EH, Glispie DM, Yuen PST. Urine exosome isolation and characterization. Methods Mol Biol. 2017;1641:413–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen BY, Sung CWH, Chen C, Cheng CM, Lin DPC, Huang CT, et al. Advances in exosomes technology. Clin Chim Acta. 2019;493:14–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Zhu D, Wang J, Wu X. A highly efficient method for isolating urinary exosomes. Int J Mol Med. 2018;43(1):83–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu LL, Zhu J, Liu JX, Jiang F, Ni WK, Qu LS, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int. 2018;26(2018):1–9.


    Google Scholar
     

  • Heinemann ML, Vykoukal J. Sequential filtration: a gentle method for the isolation of functional extracellular vesicles. Methods Mol Biol. 2017;1660:33–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020;21(18):6466.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lathe GH, Ruthven CR. The separation of substances on the basis of their molecular weights, using columns of starch and water. Biochem J. 1955;60(4):xxxiv.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruysschaert T, Marque A, Duteyrat JL, Lesieur S, Winterhalter M, Fournier D. Liposome retention in size exclusion chromatography. BMC Biotechnol. 2005;5(1):11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa M, Beyer K, Borràs FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;16(5):442.


    Google Scholar
     

  • Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019;9(4):1015–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sim SL, He T, Tscheliessnig A, Mueller M, Tan RBH, Jungbauer A. Protein precipitation by polyethylene glycol: a generalized model based on hydrodynamic radius. J Biotechnol. 2012;157(2):315–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura T, Ferran B, Tsukahara Y, Shang Q, Desai S, Fedoce A, et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep. 2019;9(1):13601.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, et al. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron. 2017;91:588–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson EL, Lu H. Advances in microfluidic cell separation and manipulation. Curr Opin Chem Eng. 2013;2(4):398–404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM. current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci. 2020;21(3):727.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di C, Zhang Q, Wang Y, Wang F, Chen Y, Gan L, et al. Exosomes as drug carriers for clinical application. Artif Cells Nanomed Biotechnol. 2018;46(sup3):564–70.

    Article 
    CAS 

    Google Scholar
     

  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9:2837.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper PD, Burt AM, Wilson JN. Critical effect of oxygen tension on rate of growth of animal cells in continuous suspended culture. Nature. 1958;182(4648):1508–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorgun C, Ceresa D, Lesage R, Villa F, Reverberi D, Balbi C, et al. Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials. 2021;269:120633.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estrada JC, Albo C, Benguría A, Dopazo A, López-Romero P, Carrera-Quintanar L, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ. 2012;19(5):743–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki A, et al. Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: wound healing and infection recovery. Front Microbiol. 2023;5:14.


    Google Scholar
     

  • Luo Z, Tian M, Yang G, Tan Q, Chen Y, Li G, et al. Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther. 2022;7(1):218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palomäki S, Pietilä M, Laitinen S, Pesälä J, Sormunen R, Lehenkari P, et al. HIF-1α is upregulated in human mesenchymal stem cells. Stem Cells Dayt Ohio. 2013;31(9):1902–9.

    Article 

    Google Scholar
     

  • Mu J, Li L, Wu J, Huang T, Zhang Y, Cao J, et al. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury. Biomater Sci. 2022;10(7):1803–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Gao C, Guo W, Zhang B, Ren S, Wu S, et al. Conductive hydrogels as an ‘innovative healer’ for the treatment of diabetic wounds. Mater Chem Front. 2024;8(18):2944–77.

    Article 
    CAS 

    Google Scholar
     

  • Peltzer J, Lund K, Goriot ME, Grosbot M, Lataillade JJ, Mauduit P, et al. Interferon-γ and hypoxia priming have limited effect on the miRNA landscape of human mesenchymal stromal cells-derived extracellular vesicles. Front Cell Dev Biol. 2020;8:581436.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):jcs.79509.


    Google Scholar
     

  • Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y. Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J Transl Med. 2016;14(1):145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiq QA, Coopman K, Nienow AW, Hewitt CJ. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J. 2016;11(4):473–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baraniak PR, McDevitt TC. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. 2012;347(3):701–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials. 2017;141:74–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan IK, Shukla N, Borrelli DA, Patel T. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018;1740:35–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanley PJ, Mei Z, Durett AG, Da Graca C-H, Klis M, Li W, et al. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system. Cytotherapy. 2014;16(8):1048–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma A, Mori T, Mahnen CJ, Everson HR, Leslie MT, Nielsen AD, et al. Effects of structural variations on the cellular response and mechanical properties of biocompatible, biodegradable, and porous smectic liquid crystal elastomers. Macromol Biosci. 2017. https://doi.org/10.1002/mabi.201600278.

    Article 
    PubMed 

    Google Scholar
     

  • Lo YP, Liu YS, Rimando MG, Ho JHC, Lin KH, Lee OK. Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells. Sci Rep. 2016;6(1):21253.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Wang B, Tang T, Lv L, Ding Z, Li Z, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res Ther. 2020;11(1):206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Liang T, He R, Ren J, Yao H, Wang K, et al. Exosomes from 3D culture of marrow stem cells enhances endothelial cell proliferation, migration, and angiogenesis via activation of the HMGB1/AKT pathway. Stem Cell Res. 2021;50:102122.

    Article 
    CAS 

    Google Scholar
     

  • Chen S, Sun F, Qian H, Xu W, Jiang J. Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy. Stem Cells Int. 2022;14(2022):1779346.


    Google Scholar
     

  • Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 2014;289(15):10330–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu P, Gul-Uludag H, Ang WT, Yang X, Huang M, Marquez-Curtis L, et al. Low-intensity pulsed ultrasound-mediated stimulation of hematopoietic stem/progenitor cell viability, proliferation and differentiation in vitro. Biotechnol Lett. 2012;34(10):1965–73.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng Y, Xu P, Pan C, Wang Y, Liu Z, Chen Y, et al. Production and biological effects of extracellular vesicles from adipose-derived stem cells were markedly increased by low-intensity ultrasound stimulation for promoting diabetic wound healing. STEM CELL Rev Rep. 2023;19(3):784–806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;37(1):63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao Z, Li S, Lu S, Liu H, Li G, Ma L, et al. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials. 2021;274:120850.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Cui K, Li J, Tang X, Lin J, Lu X, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 2020;69(1):e12660.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luengo E, Buendia I, Fernández-Mendívil C, Trigo-Alonso P, Negredo P, Michalska P, et al. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J Pineal Res. 2019;67(1):e12578.

    Article 
    PubMed 

    Google Scholar
     

  • Ma Z, Liu D, Di S, Zhang Z, Li W, Zhang J, et al. Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment. J Pineal Res. 2019;67(2):e12587.

    Article 
    PubMed 

    Google Scholar
     

  • Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: a review. J Cell Physiol. 2018;233(5):4015–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Go G, Yoon YM, Yoon S, Lee G, Lim JH, Han SY, et al. Melatonin protects chronic kidney disease mesenchymal stem/stromal cells against accumulation of methylglyoxal via modulation of hexokinase-2 expression. Biomol Ther. 2022;30(1):28–37.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, et al. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res. 2021;71(4):e12769.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res. 2019;11(5):2887–907.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon YM, Lee JH, Song KH, Noh H, Lee SH. Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res. 2020;68(3):e12632.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, et al. Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Front Neurosci. 2020;14:848.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei X, Zheng W, Tian P, Liu H, He Y, Peng M, et al. Administration of glycyrrhetinic acid reinforces therapeutic effects of mesenchymal stem cell-derived exosome against acute liver ischemia-reperfusion injury. J Cell Mol Med. 2020;24(19):11211–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Li Y, Yang Z, Zhou Z, Lou Z, Zhang Q. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair. Nanomed. 2020;15(3):273–88.

    Article 
    CAS 

    Google Scholar
     

  • Sung DK, Sung SI, Ahn SY, Chang YS, Park WS. Thrombin preconditioning boosts biogenesis of extracellular vesicles from mesenchymal stem cells and enriches their cargo contents via protease-activated receptor-mediated signaling pathways. Int J Mol Sci. 2019;20(12):2899.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu M, Xie D, Sun Y, Pan Y, Zhang Y, Chen X, et al. Exosomes derived from MSC pre-treated with oridonin alleviates myocardial IR injury by suppressing apoptosis via regulating autophagy activation. J Cell Mol Med. 2021;25(12):5486–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 2020;116(2):353–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;19(13):308.

    Article 

    Google Scholar
     

  • Liang YC, Wu YP, Li XD, Chen SH, Ye XJ, Xue XY, et al. TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol. 2019;234(12):23243–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;1(122):306–24.

    Article 

    Google Scholar
     

  • Zhang S, Jiang L, Hu H, Wang H, Wang X, Jiang J, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sci. 2020;1(246):117401.

    Article 

    Google Scholar
     

  • Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res. 2021;384(1):113–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci. 2017;18(7):E1545.

    Article 

    Google Scholar
     

  • Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1β-primed mesenchymal stem cells inhibited IL-1β- and TNF-α-mediated inflammatory responses in osteoarthritic SW982 cells. Tissue Eng Regen Med. 2021;18(4):525–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Huang H, Cui S, Zhou Y, Zhang T, Zhou Y. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death Dis. 2020;11(7):603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Wang Z, Wang K, Fu S, Li D, Wang M, et al. Paintable bioactive extracellular vesicle ink for wound healing. ACS Appl Mater Interfaces. 2023;15(21):25427–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Sun Y, Ma Y, Ao Y, Hu X, Meng Q. Engineering of MSC-derived exosomes: a promising cell-free therapy for osteoarthritis. Membranes. 2022;12(8):739.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanchanapally R, Khan MA, Deshmukh SK, Srivastava SK, Khushman M, Singh S, et al. Exosomal formulation escalates cellular uptake of honokiol leading to the enhancement of its antitumor efficacy. ACS Omega. 2020;5(36):23299–307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Wang L, Guo H, Chen L, Huang X. Dapagliflozin-loaded exosome mimetics facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Adv Healthc Mater. 2023;12(7):2202751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Wu J, Li D, Hao L, Li Y, Yi D, et al. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnology. 2022;20(1):135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Yu M, Chen F, Wang L, Ye C, Chen Q, et al. A novel delivery nanobiotechnology: engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. J Nanobiotechnology. 2021;19(1):269.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang CC, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52(5):e12669.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei H, Green E, Ball L, Fan H, Lee J, Strange C, et al. Proteomic analysis of exosomes secreted from human alpha-1 antitrypsin overexpressing mesenchymal stromal cells. Biology. 2021;11(1):9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Liu N, Wei Y, Zhou D, Lin R, Wang X, et al. Anticancer effects of miR-124 delivered by BM-MSC derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging. 2020;12(19):19660–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You B, Jin C, Zhang J, Xu M, Xu W, Sun Z, et al. MSC-derived extracellular vesicle-delivered L-PGDS inhibit gastric cancer progression by suppressing cancer cell stemness and STAT3 phosphorylation. Stem Cells Int. 2022;2022:9668239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Q, Chu Z, Wang Z, Li Q, Meng S, Lu Y, et al. circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models. Nat Commun. 2024;15(1):3904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, et al. Mesenchymal stromal cell-derived tailored exosomes treat bacteria-associated diabetes foot ulcers: a customized approach from bench to bed. Front Microbiol. 2021;27(12):712588.

    Article 

    Google Scholar
     

  • Wu J, Ma L, Sun D, Zhang X, Cui J, Du Y, et al. Bioengineering extracellular vesicles as novel nanocarriers towards brain disorders. Nano Res. 2023;16(2):2635–59.

    Article 
    CAS 

    Google Scholar
     

  • Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact. 2020;20:100261.

    Article 

    Google Scholar
     

  • Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M, Pardakhty A. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU J Pharm Sci. 2019;27(2):533–9.

    Article 
    CAS 

    Google Scholar
     

  • Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int J Mol Sci. 2021;22(17):9543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning S, Zhang X, Suo M, Lyu M, Pan Y, Jiang Y, et al. Platelet-derived exosomes hybrid liposomes facilitate uninterrupted singlet oxygen generation to enhance breast cancer immunotherapy. Cell Rep Phys Sci. 2023;4(7):101505.

    Article 
    CAS 

    Google Scholar
     

  • Hu S, Wang X, Li Z, Zhu D, Cores J, Wang Z, et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today. 2021;1(39):101210.

    Article 

    Google Scholar
     

  • Evers MJW, van de Wakker SI, de Groot EM, de Jong OG, Gitz-François JJJ, Seinen CS, et al. Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles. Adv Healthc Mater. 2022;11(5):2101202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Generation of small RNA-modulated exosome mimetics for bone regeneration. ACS Nano. 2020;14(9):11973–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Controll Release. 2015;205:35–44.

    Article 
    CAS 

    Google Scholar
     

  • Yu Y, Jin H, Li L, Zhang X, Zheng C, Gao X, et al. An injectable, activated neutrophil-derived exosome mimetics/extracellular matrix hybrid hydrogel with antibacterial activity and wound healing promotion effect for diabetic wound therapy. J Nanobiotechnol. 2023;21(1):308.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Wan G, Jiang T, Yan C, Jiang G, Zhang M, et al. Engineered biomimetic nanovesicles-laden multifunctional hydrogel enhances targeted therapy of diabetic wound. Mater Today Bio. 2024;1(29):101330.

    Article 

    Google Scholar
     

  • Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS, Yun YE, et al. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 2020;9(1):1735249.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakilian S, Jamshidi-adegani F, Al-Fahdi F, Mirsanei Z, Al-kindi J, Al-Riyami K, et al. Engineered local delivery of extracellular vesicles loaded with si-TNF-α, via a core-sheath 3D-bio-printed scaffold as an effective wound dressing. J Drug Deliv Sci Technol. 2024;1(101):106189.

    Article 

    Google Scholar
     

  • Oskouie MN, Aghili Moghaddam NS, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. J Cell Physiol. 2019;234(6):8182–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Controll Release. 2022;347:533–43.

    Article 
    CAS 

    Google Scholar
     

  • Guo Y, Wan Z, Zhao P, Wei M, Liu Y, Bu T, et al. Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes. J Nanobiotechnology. 2021;19(1):402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oku N, MacDonald RC. Differential effects of alkali metal chlorides on formation of giant liposomes by freezing and thawing and by dialysis. Biochemistry. 1983;22(4):855–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pick U. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys. 1981;212(1):186–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato YT, Umezaki K, Sawada S, Mukai S, atsu, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6(1):21933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hettich BF, Bader JJ, Leroux J. Encapsulation of hydrophilic compounds in small extracellular vesicles: loading capacity and impact on vesicle functions. Adv Healthc Mater. 2022;11(5):2100047.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajipour H, Farzadi L, Roshangar L, Latifi Z, Kahroba H, Shahnazi V, et al. A human chorionic gonadotropin (hCG) delivery platform using engineered uterine exosomes to improve endometrial receptivity. Life Sci. 2021;275:119351.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao-Ming Xi XMX, Chen-Meng CM, Shu-Jun Xia SJX, Rong Lu RL. Drug loading techniques for exosome-based drug delivery systems. Pharmazie. 2021;76(2/3):61–7.

    PubMed 

    Google Scholar
     

  • Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. J Mater Chem B. 2020;8(21):4552–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smyth T, Petrova K, Payton N, Persaud I, Redzic J, Gruner M, et al. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25(10):1777–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen G, Katrekar D, Mali P. RNA-guided adenosine deaminases: advances and challenges for therapeutic RNA editing. Biochemistry. 2019;58(15):1947–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng J, Gu C, Sun Y, Chen X. Engineering of M2 macrophages-derived exosomes via click chemistry for spinal cord injury repair. Adv Healthc Mater. 2023. https://doi.org/10.1002/adhm.202203391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao D, Lu L, Song H, Duan Y, Chen J, Carney R, et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics. 2022;12(13):6021–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang M, Chen X, Du D, Shi J, Deng M, Long Q, et al. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. Nanoscale. 2020;12(1):173–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di H, Zeng E, Zhang P, Liu X, Zhang C, Yang J, et al. General approach to engineering extracellular vesicles for biomedical analysis. Anal Chem. 2019;91(20):12752–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamura R, Uemoto S, Tabata Y. Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater. 2017;15(57):274–84.

    Article 

    Google Scholar
     

  • Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018;10(444):eaat0195.

    Article 
    PubMed 

    Google Scholar
     

  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials. 2020;2(242):119925.

    Article 

    Google Scholar
     

  • Liang Y, Xu X, Xu L, Iqbal Z, Ouyang K, Zhang H, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Hong Y, Nam GH, Chung JH, Koh E, Kim IS. Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Adv Mater. 2017;29(13). https://doi.org/10.1002/adma.201605604.

    Article 
    PubMed 

    Google Scholar
     

  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira AD, Gomes DA. Stem cell extracellular vesicles in skin repair. Bioeng Basel Switz. 2018;6(1):E4.


    Google Scholar
     

  • Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous wound healing: an update from physiopathology to current therapies. Life. 2021;11(7):665.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braund R, Hook S, Medlicott NJ. The role of topical growth factors in chronic wounds. Curr Drug Deliv. 2007;4(3):195–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Margolis DJ, Kantor J, Santanna J, Strom BL, Berlin JA. Risk factors for delayed healing of neuropathic diabetic foot ulcers: a pooled analysis. Arch Dermatol. 2000;136(12):1531–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA. Healing diabetic neuropathic foot ulcers: are we getting better? Diabet Med. 2005;22(2):172–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6(1):32993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci. 2020;111(9):3100–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7):1729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traversa B, Sussman G. The role of growth factors, cytokines and proteases in wound management. Prim Intent: Aust J Wound Manag. 2001;9:161–7.


    Google Scholar
     

  • Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. 2005;304(1):274–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiritsy CP, Lynch AB, Lynch SE. Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biol. 1993;4(5):729–60.

    Article 
    CAS 

    Google Scholar
     

  • Diegelmann RF, Cohen IK, Kaplan AM. The role of macrophages in wound repair: a review. Plast Reconstr Surg. 1981;68(1):107–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XM, Wang CC, Xiao Y, Jiang P, Liu Y, Qi ZQ. Enhanced wound healing and hemostasis with exosome-loaded gelatin sponges from human umbilical cord mesenchymal stem cells. World J Stem Cells. 2023;15(9):947–59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci CMLS. 2016;73(20):3861–85.

    Article 
    PubMed 

    Google Scholar
     

  • Blazquez R, Sanchez-Margallo FM, De La Rosa O, Dalemans W, Ãlvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):1–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Xia J, Huang R, Hu Y, Fan J, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther. 2020;11(1):424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao B, Zhang X, Zhang Y, Lu Y, Zhang W, Lu S, et al. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells Dev. 2021;30(18):922–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med. 2019;13(4):555–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao PC, Burnouf T, Chiang CW, Jheng PR, Szunerits S, Yang JC, et al. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnology. 2023;21(1):318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells. 2020;9(5):E1157.

    Article 

    Google Scholar
     

  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res Eur Chir Forsch Rech Chir Eur. 2017;58(1–2):81–94.


    Google Scholar
     

  • Pomatto M, Gai C, Negro F, Cedrino M, Grange C, Ceccotti E, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int J Mol Sci. 2021;22(8):3851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology. 2021;19(1):150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Badiavas EV. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis In vitro. Stem Cells Dev. 2015;24(14):1635–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian X, Li B, Yang J, Ma K, Sun M, Zhang C, et al. Regenerative and protective effects of dMSC-sEVs on high-glucose-induced senescent fibroblasts by suppressing RAGE pathway and activating smad pathway. Stem Cell Res Ther. 2020;11(1):166.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Han F, Gu L, Ji P, Yang X, Liu M, et al. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. J Mol Histol. 2020;51(4):375–83.

    Article 
    PubMed 

    Google Scholar
     

  • Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):10847–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao G, Liu F, Liu Z, Zuo K, Wang B, Zhang Y, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11(1):174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Jiao Y, Pan Y, Zhang L, Gong H, Qi Y, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;10(2019):1–11.


    Google Scholar
     

  • Broughton G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117(SUPPLEMENT):12S-34S.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarty SM, Percival SL. Proteases and delayed wound healing. Adv Wound Care. 2013;2(8):438–47.

    Article 

    Google Scholar
     

  • auf dem Keller U, Sabino F. Matrix metalloproteinases in impaired wound healing. Met Med. 2015;2:1.


    Google Scholar
     

  • Zhang B, Shi Y, Gong A, Pan Z, Shi H, Yang H, et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the wnt response via modulation of YAP during cutaneous regeneration. Stem Cells. 2016;34(10):2485–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2017;7(1):13321.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell. 2017;16(5):1083–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Hu W, Huang Q, Yang J, Li B, Ma K, et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther. 2023;8(1):62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang K, Li D, Wang M, Xu Z, Chen X, Liu Q, et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2019;10(1):358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Kang L, Tian J, Wu Y, Liu J, Li Z, Wu X, Huang Y, Gao B, Wang H, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine. 2020;15:7979–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, et al. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater. 2023;157:175–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020;154:259–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz-Siegmund M, Aigner A. Nucleic acid delivery with extracellular vesicles. Adv Drug Deliv Rev. 2021;173:89–111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wang L, Zeng X, Schwarz H, Nanda HS, Peng X, et al. Exosomes, a new star for targeted delivery. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.751079.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi A, Li J, Qiu X, Sabbah M, Boroumand S, Huang TCT, et al. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics. 2021;11(13):6616–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, et al. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv. 2022;29(1):214–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv Q, Deng J, Chen Y, Wang Y, Liu B, Liu J. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm. 2020;17(5):1723–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong QH, Zhao L, Wan GQ, Hu YG, Li XL. Engineered BMSCs-derived exosomal miR-542-3p promotes cutaneous wound healing. Endocr Metab Immune Disord Drug Targets. 2023;23(3):336–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheikh IM, Hassan OA, Adam SM, Ali AI, Ogedegbe OJ, Tabowei G, et al. Association of pioglitazone with major adverse cardiovascular events, all-cause mortality, and heart failure hospitalizations: a systematic review. Cureus. 2023;15(10):e46911.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials. 2019;12(13):2176.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khorasani MT, Joorabloo A, Adeli H, Milan PB, Amoupour M. Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: In vitro and in vivo evaluation. Int J Biol Macromol. 2021;166:200–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joorabloo A, Khorasani MT, Adeli H, Brouki Milan P, Amoupour M. Using artificial neural network for design and development of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound healing. J Ind Eng Chem. 2022;108:88–100.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Wang Y, Shi L, Li B, Li J, Wei Z, et al. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology. 2020;18(1):113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian Z, Bai Y, Zhou J, Li L, Na J, Fan Y, et al. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B. 2020;8(32):7197–212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun B, Wu F, Wang X, Song Q, Ye Z, Mohammadniaei M, et al. An optimally designed engineering exosome-reductive COF integrated nanoagent for synergistically enhanced diabetic fester wound healing. Small. 2022;18(26):2200895.

    Article 
    CAS 

    Google Scholar
     

  • Lu W, Zhang J, Wu Y, Sun W, Jiang Z, Luo X. Engineered NF-κB siRNA-encapsulating exosomes as a modality for therapy of skin lesions. Front Immunol. 2023;8(14):1109381.

    Article 

    Google Scholar
     

  • Ge L, Wang K, Lin H, Tao E, Xia W, Wang F, et al. Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction. Front Bioeng Biotechnol. 2023;1(11):1129538.

    Article 

    Google Scholar
     

  • Kooijmans SAA, De Jong OG, Schiffelers RM. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev. 2021;173:252–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Ma X, Liu B, Yang Y, Yang Y, Ren T, et al. Antioxidant-engineered milk-derived extracellular vesicles for accelerating wound healing via regulation of the PI3K-AKT signaling pathway. Adv Healthc Mater. 2023;12(32):2301865.

    Article 
    CAS 

    Google Scholar
     

  • Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, et al. Mesenchymal stem cell-derived exosomes loaded with miR-155 inhibitor ameliorate diabetic wound healing. Mol Pharm. 2022;19(5):1294–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falanga V, Isseroff RR, Soulika AM, Romanelli M, Margolis D, Kapp S, et al. Chronic wounds. Nat Rev Dis Primer. 2022;8(1):50.

    Article 

    Google Scholar
     

  • Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-based therapies for skin diseases. Regen Ther. 2024;25:101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mony MP, Harmon KA, Hess R, Dorafshar AH, Shafikhani SH. An updated review of hypertrophic scarring. Cells. 2023;12(5):678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, et al. MiR-141-3p-functionalized exosomes loaded in dissolvable microneedle arrays for hypertrophic scar treatment. Small. 2024;20(8):2305374.

    Article 
    CAS 

    Google Scholar
     

  • Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep. 2021;24(5):758.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang L, Zhang Y, Liu T, Wang X, Wang H, Song H, et al. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie. 2020;177:40–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers LC, Lavery LA, Joseph WS, Armstrong DG. All feet on deck: the role of podiatry during the COVID-19 pandemic: preventing hospitalizations in an overburdened health-care system, reducing amputation and death in people with diabetes. J Am Podiatr Med Assoc. 2023;113(2):20-051. https://doi.org/10.7547/20-051.

    Article 
    PubMed 

    Google Scholar
     

  • Blanchette V, Brousseau-Foley M, Cloutier L. Effect of contact with podiatry in a team approach context on diabetic foot ulcer and lower extremity amputation: systematic review and meta-analysis. J Foot Ankle Res. 2020;13(1):15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsson M, Järbrink K, Divakar U, Bajpai R, Upton Z, Schmidtchen A, et al. The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2019;27(1):114–25.


    Google Scholar
     

  • Sen CK. Human wound and its burden: updated 2022 compendium of estimates. Adv Wound Care. 2023;12(12):657–70.

    Article 

    Google Scholar
     

  • Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol. 2016;74(4):607–25.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Q, Gibb M, Graves N, Finlayson K, Pacella RE. Cost-effectiveness analysis of guideline-based optimal care for venous leg ulcers in australia. BMC Health Serv Res. 2018;18(1):421.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razavi ZS, Sharafshadehi SA, Yousefi MH, Javaheri F, Barghani MRR, Afkhami H, et al. Application of novel strategies in chronic wound management with focusing on pressure ulcers: new perspective. Arch Dermatol Res. 2025;317(1):320.

    Article 
    PubMed 

    Google Scholar
     

  • Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of appropriate wound dressing for various Wounds. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020;15(107):25–49.

    Article 

    Google Scholar
     

  • Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casciato DJ, Yancovitz S, Thompson J, Anderson S, Bischoff A, Ayres S, et al. Diabetes-related major and minor amputation risk increased during the COVID-19 pandemic. J Am Podiatr Med Assoc. 2020;3:20–224.


    Google Scholar
     

  • Corbett LQ. Wound care nursing: professional issues and opportunities. Adv Wound Care. 2012;1(5):189–93.

    Article 

    Google Scholar
     

  • Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care. 2021;10(5):281–92.

    Article 

    Google Scholar
     

  • Nelson EA, Bell-Syer SE. Compression for preventing recurrence of venous ulcers. Cochrane Wounds Group, editor. Cochrane Database Syst Rev [Internet]. 2014 Sep 9 [cited 2024 Jan 12];2014 (9). Available from: https://www.cochranelibrary.com/cdsr/doi/https://doi.org/10.1002/14651858.CD002303.pub3/full

  • Team V, Chandler PG, Weller CD. Adjuvant therapies in venous leg ulcer management: a scoping review. Wound Repair Regen. 2019;27(5):562–90.

    Article 
    PubMed 

    Google Scholar
     

  • Mościcka P, Szewczyk M, Cwajda-Białasik J, Jawień A. The role of compression therapy in the treatment of venous leg ulcers. Adv Clin Exp Med. 2018;28(6):847–52.

    Article 

    Google Scholar
     

  • Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in healing wound: role of complementary and alternative medicine. Front Nutr. 2022;20(8):791899.

    Article 

    Google Scholar
     

  • Misra A, Nanchahal J. Use of gauze soaked in povidone iodine for dressing acute open wounds. Plast Reconstr Surg. 2003;111(6):2105–7.

    PubMed 

    Google Scholar
     

  • Hudspith J, Rayatt S. First aid and treatment of minor burns. BMJ. 2004;328(7454):1487–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4(1):26316.

    Article 
    PubMed 

    Google Scholar
     

  • Schiffelers RM, Bakker-Woudenberg IAJM, Storm G. Localization of sterically stabilized liposomes in experimental rat klebsiella pneumoniae pneumonia: dependence on circulation kinetics and presence of poly (ethylene)glycol coating. Biochim Biophys Acta BBA – Biomembr. 2000;1468(1–2):253–61.

    Article 
    CAS 

    Google Scholar
     

  • Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123(2):208–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics. 2022;12(11):4879–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. J Extracell Vesicles. 2015;4(1):30087.

    Article 
    PubMed 

    Google Scholar
     

  • Roy S, Hochberg FH, Jones PS. Extracellular vesicles: the growth as diagnostics and therapeutics; a survey. J Extracell Vesicles. 2018;7(1):1438720.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma KD, Lewis F, Mejia M, Chalasani M, Marcus KA. Food and drug administration perspective: advancing product development for non-healing chronic wounds. Wound Repair Regen. 2022;30(3):299–302.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Tu J, Huang J, Wen H, Zeng Y, Lu Y. Exosomal IRF1-loaded rat adipose-derived stem cell sheet contributes to wound healing in the diabetic foot ulcers. Mol Med. 2023;29(1):60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Fu L, Zou H, He Y, Pan Y, Ye L, et al. Optogenetic engineered umbilical cord MSC-derived exosomes for remodeling of the immune microenvironment in diabetic wounds and the promotion of tissue repair. J Nanobiotechnology. 2023;21(1):176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Wu Y, Zhang B, Xiong M, Yi Y, Zhang Q, et al. Exosomes derived from E2F1-/- adipose-derived stem cells promote skin wound healing via miR-130b-5p/TGFBR3 axis. Int J Nanomedicine. 2023;18:6275–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heo JS. Selenium-stimulated exosomes enhance wound healing by modulating inflammation and angiogenesis. Int J Mol Sci. 2022;23(19):11543.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, et al. miR-100–5p promotes epidermal stem cell proliferation through targeting MTMR3 to activate PIP3/AKT and ERK signaling pathways. Stem Cells Int. 2022;2022:1–16.

    CAS 

    Google Scholar
     

  • Huang J, Yu M, Yin W, Liang B, Li A, Li J, et al. Development of a novel RNAi therapy: engineered miR-31 exosomes promoted the healing of diabetic wounds. Bioact Mater. 2021;6(9):2841–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang XF, Wang T, Wang ZX, Huang KP, Zhang YW, Wang GL, et al. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol Ther – Nucleic Acids. 2021;26:347–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *