Engineering pyroptotic vesicles as personalized cancer vaccines


  • Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, B., Smerin, D., Gao, Q., Kang, C. & Xiong, X. High-throughput sequencing of the immune repertoire in oncology: applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Lett. 416, 42–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivatsan, S. et al. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum. Vaccines Immunother. 10, 52–63 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Frey, A. B. & Monu, N. Signaling defects in anti‐tumor T cells. Immunol. Rev. 222, 192–205 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen-Jarolim, E. & Singer, J. Cancer vaccines inducing antibody production: more pros than cons. Expert Rev. Vaccines 10, 1281–1289 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Cui, H., Zhang, W., Li, Z. & Gao, J. Engineered tumor cell-derived vaccines against cancer: the art of combating poison with poison. Bioact. Mater. 22, 491–517 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • van Niel, G. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kumari, P. et al. Host extracellular vesicles confer cytosolic access to systemic LPS licensing non-canonical inflammasome sensing and pyroptosis. Nat. Cell Biol. 25, 1860–1872 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatta, R. et al. Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines. Nat. Commun. 14, 8047 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13, eabb6981 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, G. H. et al. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv. Mater. 32, 2002440 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, S., Xu, J., Qian, J. & Gao, X. Engineering extracellular vesicles for cancer therapy: recent advances and challenges in clinical translation. Biomater. Sci. 8, 6978–6991 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, P. & Almeida, F. Exosome-based vaccines: history, current state, and clinical trials. Front. Immunol. 12, 711565 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadi, M., Abbasi, R. & Rezaie, J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun. Signal. 22, 9 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther. 6, 128 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 26, 99–114 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Faria, S. S. et al. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J. Biomed. Sci. 28, 26 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. T. et al. Enhancing gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response. Nat. Commun. 13, 6321 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horrevorts, S. K. et al. Glycan-modified apoptotic melanoma-derived extracellular vesicles as antigen source for anti-tumor vaccination. Cancers 11, 1266 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnurr, M. et al. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells. Cancer Res. 62, 2347–2352 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. L. et al. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv. Sci. 8, 2004929 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. L. et al. Immuno-modulators enhance antigen-specific immunity and anti-tumor effects of mesothelin-specific chimeric DNA vaccine through promoting DC maturation. Cancer Lett. 425, 152–163 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mossoba, M. E. et al. Tumor protection following vaccination with low doses of lentivirally transduced DCs expressing the self-antigen erbB2. Mol. Ther. 16, 607–617 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toldo, S. & Abbate, A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat. Rev. Cardiol. 21, 219–237 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamani, P., Oskuee, R. K., Atkin, S. L., Navashenaq, J. G. & Sahebkar, A. MicroRNAs as important regulators of the NLRP3 inflammasome. Prog. Biophys. Mol. Bio. 150, 50–61 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ding, S., Liu, D., Wang, L., Wang, G. & Zhu, Y. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J. Pharmacol. Exp. Ther. 372, 128–135 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Sun, L., Jia, K., Wang, H. & Wang, X. miR-9-5p modulates the progression of Parkinson’s disease by targeting SIRT1. Neurosci. Lett. 701, 226–233 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, D. et al. ALDOA maintains NLRP3 inflammasome activation by controlling AMPK activation. Autophagy 18, 1673–1693 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki, R. et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature 540, 583–587 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, B. R. & Kanneganti, T. D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 22, 550–559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8+ T cells to boost anti-PD-1 therapy. Nat. Commun. 14, 5653 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, B. A., Cross, J. L., Najar, H. M. & Dutz, J. P. Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 27, 5791–5799 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 9, 1532 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, S. S. et al. Transplantation of gasdermin pores by extracellular vesicles propagates pyroptosis to bystander cells. Cell 188, P280-291.E17 (2024).

  • Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baxter, A. A. et al. Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death. Sci. Rep. 9, 7538 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages. J. Proteome Res. 16, 170–178 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *