Electric bias-induced reversible configuration of single and heteronuclear dual-atom catalysts on 1Tʹ-MoS2


  • Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 611, 284–288 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu–N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L., Chen, T. & Chen, Z. Understanding the dynamic aggregation in single‐atom catalysis. Adv. Sci. 11, 2308046 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 4, 242–250 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. High loading of transition metal single atoms on chalcogenide catalysts. J. Am. Chem. Soc. 143, 7979–7990 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan, X. et al. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS A.E.M. 1, 4754–4765 (2018).

    CAS 

    Google Scholar
     

  • Hou, H. L. et al. High-yield preparation of exfoliated 1T-MoS2 with SERS activity. Chem. Mater. 31, 5725–5734 (2019).

    Article 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano 11, 3392–3403 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, W. et al. Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nat. Commun. 11, 1532 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 621, 300–305 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, Y. et al. Chemically switchable n-type and p-type conduction in bismuth selenide nanoribbons for thermoelectric energy harvesting. ACS nano 15, 2791–2799 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, F. et al. Z-contrast and electron energy loss spectroscopy study of passive layer formation at ferroelectric PbTiO3/Pt interfaces. Appl. Phys. Lett. 87, 262904 (2005).

    Article 

    Google Scholar
     

  • Ahn, C. C. & Krivanek, O. L. EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements (Gatan, Warrendale, PA, 1983).

  • Chen, Z. X. et al. Addressing the quantitative conversion bottleneck in single-atom catalysis. Nat. Commun. 13, 2807 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Q. Q. et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, F. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 144, 18485–18493 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kan, M. et al. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118, 1515–1522 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. H. et al. Creating high regioselectivity by electronic metal–support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 143, 15453–15461 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Promoting dinuclear‐type catalysis in Cu1–C3N4 single‐atom catalysts. Adv. Mater. 34, 2204638 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 10, 5812 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. Y. et al. Pt single-atom electrocatalysts at Cu2O nanowires for boosting electrochemical sensing toward glucose. Chem. Eng. J. 495, 153564 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J. Am. Chem. Soc. 144, 19456–19465 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, J. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem. Int. Ed. 11, 4396–4400 (2020).

    Article 

    Google Scholar
     

  • Wondergem, C. S., Hartman, T. & Weckhuysen, B. M. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy to unravel sequential hydrogenation of phenylacetylene over platinum nanoparticles. ACS Catal. 9, 10794–10802 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Q. et al. Atomic layers of B2CuPd on Cu nanocubes as catalysts for selective hydrogenation. J. Am. Chem. Soc. 145, 19961–19968 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654–8660 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, C. et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 15113 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *