Dynamic QSAR modeling for predicting in vivo genotoxicity and inflammation induced by nanoparticles and advanced materials: a time-dose-property/response approach | Journal of Nanobiotechnology


  • Gu C, Su X, Liu B, Zheng C, Wang S, Tian Y et al. Recent progress in advanced materials for electrochemical determination of phenolic contaminants. Microchem J. 2023;195.

  • Ling Z, Yang J, Zhang Y, Zeng D, Wang Y, Tian Y et al. Applications of advanced materials in the pretreatment and rapid detection of small molecules in foods: A review. Trends Food Sci Technol. 2023;141.

  • Liu X, Xiao M, Li Y, Chen Z, Yang H, Wang X. Advanced porous materials and emerging technologies for radionuclides removal from Fukushima radioactive water. Eco-Environment Health. 2023;2.

  • Arvidsson R, Peters G, Hansen SF, Baun A. Prospective environmental risk screening of seven advanced materials based on production volumes and aquatic ecotoxicity. NanoImpact. 2022;25.

  • El-Kady MM, Ansari I, Arora C, Rai N, Soni S, Verma DK et al. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. J Mol Liq. 2023;370.

  • Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res. 2019;52.

  • Di Ianni E, Møller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2021;872.

  • Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA et al. Single-Walled vs. Multi-Walled carbon nanotubes: influence of Physico-Chemical properties on toxicogenomics responses in mouse lungs. Nanomaterials. 2023;13.

  • Zhang M, Li X, Lu Y, Fang X, Chen Q, Xing M et al. Studying the genotoxic effects induced by two kinds of bentonite particles on human B lymphoblast cells in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2011;720.

  • Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P et al. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect. 2017;125.

  • Hristozov D, Badetti E, Bigini P, Brunelli A, Dekkers S, Diomede L, et al. Next generation risk assessment approaches for advanced nanomaterials: current status and future perspectives. NanoImpact. 2024;35:100523.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, et al. Safety assessment of Graphene-Based materials. Focus on Human Health and the Environment. ACS Nano; 2018;12.

  • Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021.

  • Di Ianni E, Jacobsen NR, Vogel UB, Møller P. Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. Mutat Res Rev Mutat Res. 2022;790.

  • Jin M, Li N, Sheng W, Ji X, Liang X, Kong B et al. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of parkinson’s disease-like symptoms induced by zinc oxide nanorods. Environ Int. 2021;146.

  • Thu HE, Haider MA, Khan S, Sohail M, Hussain Z. Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations. OpenNano. 2023;14.

  • Danielsen PH, Poulsen SS, Knudsen KB, Clausen PA, Jensen KA, Wallin H et al. Physicochemical properties of 26 carbon nanotubes as predictors for pulmonary inflammation and acute phase response in mice following intratracheal lung exposure. Environ Toxicol Pharmacol. 2024;107.

  • Ahmad J, Wahab R, Siddiqui A, Ahamed M. M. Cytotoxicity and apoptosis induction of zinc ferrite nanoparticle through the oxidative stress pathway in human breast cancer cells. J King Saud Univ Sci. 2024;36.

  • Husain M, Saber AT, Guo C, Jacobsen NR, Jensen KA, Yauk CL et al. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol. 2013;269.

  • Jacobsen NR, Stoeger T, van den Brule S, Saber AT, Beyerle A, Vietti G et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol. 2015;85.

  • Umezawa M, Onoda A, Korshunova I, Jensen ACØ, Koponen IK, Jensen KA et al. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part Fibre Toxicol. 2018;15.

  • Gromelski M, Stoliński F, Jagiello K, Rybińska-Fryca A, Williams A, Halappanavar S et al. AOP173 key event associated pathway predictor–online application for the prediction of benchmark dose lower bound (BMDLs) of a transcriptomic pathway involved in MWCNTs-induced lung fibrosis. Nanotoxicology. 2022;16.

  • Halappanavar S, van den Brule S, Nymark P, Gaté L, Seidel C, Valentino S, Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, Stöger T, Boyadziev A, Poulsen SS, Sørli JB, Vogel U. Part Fibre Toxicol. 2020 May 25;17(1):16. doi: 10.1186/s12989-020-00344-4. PMID: 32450889.

  • DeMarini DM, Gwinn W, Watkins E, Reisfeld B, Chiu WA, Zeise L et al. IARC workshop on the key characteristics of carcinogens: assessment of end points for evaluating mechanistic evidence of carcinogenic hazards. Environ Health Perspect. 2025;133.

  • Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect. 2016;124.

  • Nymark P, Karlsson HL, Halappanavar S, Vogel U. Adverse outcome pathway development for assessment of lung carcinogenicity by nanoparticles. Front Toxicol. 2021;3.

  • Huang HJ, Lee YH, Hsu YH, Liao C, Te, Lin YF, Chiu HW. Current strategies in assessment of nanotoxicity: alternatives to in vivo animal testing. Int J Mol Sci. 2021;22.

  • Pallocca G, Moné MJ, Kamp H, Luijten M, van de Water B, Leist M. Next-Generation risk assessment of Chemicals – Rolling out a Human-Centric testing strategy to drive 3R implementation: the RISK-HUNT3R project perspective. Altex. 2022;39.

  • Russell W, Burch R. The Principles of Humane Experimental Technique by, Russell WMS, Burch RL. John Hopkins Bloomberg School of Public Health. 1959.

  • Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W et al. New approach methodologies in human regulatory toxicology – Not if, but how and when! Environ Int. 2023;178.

  • Kavlock RJ, Bahadori T, Barton-Maclaren TS, Gwinn MR, Rasenberg M, Thomas RS. Accelerating the Pace of chemical risk assessment. Chem Res Toxicol. 2018;31.

  • ECHA (European Chemicals Agency). New Approach Methodologies in Regulatory Science. New Approach Methodologies in Regulatory Science. 2016.

  • Hatherell S, Baltazar MT, Reynolds J, Carmichael PL, Dent M, Li H et al. Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment. Toxicol Sci. 2020;176.

  • OECD. Overview of Concepts and Available Guidance related to Integrated Approaches to Testing and Assessment (IATA). 2020 Oct.

  • Jeliazkova N, Bleeker E, Cross R, Haase A, Janer G, Peijnenburg W et al. How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact. 2022;25.

  • Murphy F, Jacobsen NR, Di Ianni E, Johnston H, Braakhuis H, Peijnenburg W et al. Grouping MWCNTs based on their similar potential to cause pulmonary hazard after inhalation: a case-study. Part Fibre Toxicol. 2022;19.

  • Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG et al. An integrated approach to testing and assessment to support grouping and Read-Across of nanomaterials after inhalation exposure. Appl Vitro Toxicol. 2021;7.

  • Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V et al. QSAR without borders. Chem Soc Rev. 2020;49.

  • Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Environ Int. 2023;177:108025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011;6.

  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ et al. Quantitative nanostructure-activity relationship modeling. ACS Nano [Internet]. 2010;4:5703–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=299762126;tool=pmcentrez26;rendertype=abstract

  • Liu R, Zhang HY, Ji ZX, Rallo R, Xia T, Chang CH et al. Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale. 2013;5.

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012;6:4349–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fjodorova N, Novic M, Gajewicz A, Rasulev B. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Nanotoxicology. 2017;11.

  • Gajewicz A, Schaeublin N, Rasulev B, Hussain S, Leszczynska D, Puzyn T et al. Towards Understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology. 2015;9.

  • Gajewicz A. Development of valuable predictive read-across models based on real-life (sparse) nanotoxicity data. Environ Sci Nano. 2017;4.

  • Huang Y, Li X, Xu S, Zheng H, Zhang L, Chen J et al. Quantitative structure–activity relationship models for predicting inflammatory potential of metal oxide nanoparticles. Environ Health Perspect. 2020;128.

  • Kotzabasaki MI, Sotiropoulos I, Sarimveis H. QSAR modeling of the toxicity classification of superparamagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring applications: an integrated study from data curation to model development. RSC Adv. 2020;10.

  • Kotzabasaki M, Sotiropoulos I, Charitidis C, Sarimveis H. Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction. Nanoscale Adv. 2021;3.

  • Merugu S, Jagiello K, Gajewicz-Skretna A, Halappanavar S, Willliams A, Vogel U et al. The impact of carbon nanotube properties on lung pathologies and atherosclerosis through acute inflammation: a new AOP‐Anchored in Silico NAM. Small. 2025;21.

  • Di Ianni E, Møller P, Mortensen A, Szarek J, Clausen PA, Saber AT et al. Organomodified nanoclays induce less inflammation, acute phase response, and genotoxicity than pristine nanoclays in mice lungs. Nanotoxicology. 2020;14.

  • Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T et al. Fast and robust proteome screening platform identifies neutrophil extracellular trap formation in the lung in response to Cobalt ferrite nanoparticles. ACS Nano. 2020;14.

  • Danielsen PH, Knudsen KB, Štrancar J, Umek P, Koklič T, Garvas M et al. Effects of physicochemical properties of TiO2 nanomaterials for pulmonary inflammation, acute phase response and alveolar proteinosis in intratracheally exposed mice. Toxicol Appl Pharmacol. 2020;386.

  • Wallin H, Kyjovska ZO, Poulsen SS, Jacobsen NR, Saber AT, Bengtson S et al. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice. Mutagenesis. 2017;32.

  • Saber AT, Mortensen A, Szarek J, Jacobsen NR, Levin M, Koponen IK et al. Toxicity of pristine and paint-embedded TiO 2 nanomaterials. Hum Exp Toxicol. 2019;38.

  • Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology. 2022;16.

  • Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H et al. DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex 90) nanoparticles in mice. Environ Mol Mutagen. 2015;56.

  • Hadrup N, Rahmani F, Jacobsen NR, Saber AT, Jackson P, Bengtson S et al. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology. 2019;13.

  • Barfod KK, Bendtsen KM, Berthing T, Koivisto AJ, Poulsen SS, Segal E et al. Increased surface area of Halloysite nanotubes due to surface modification predicts lung inflammation and acute phase response after pulmonary exposure in mice. Environ Toxicol Pharmacol. 2020;73.

  • Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E et al. Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials: inflammation and DNA strand breaks. Environ Toxicol Pharmacol. 2020;74.

  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS et al. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-MutaTMmouse lung epithelial cells. Environ Mol Mutagen. 2008;49.

  • Keller JG, Graham UM, Koltermann-Jülly J, Gelein R, Ma-Hock L, Landsiedel R et al. Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: the case of barium sulfate. Sci Rep. 2020;10.

  • Holmfred E, Loeschner K, Sloth JJ, Jensen KA. Validation and demonstration of an Atmosphere-TemperaturepH-Controlled stirred batch reactor system for determination of (Nano)Material solubility and dissolution kinetics in physiological simulant lung fluids. Nanomaterials. 2022;12.

  • Zanoni I, Keller JG, Sauer UG, Müller P, Ma-Hock L, Jensen KA et al. Dissolution rate of nanomaterials determined by ions and particle size under lysosomal conditions: contributions to standardization of simulant fluids and analytical methods. Chem Res Toxicol. 2022;35.

  • Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, et al. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis. 2017;32:581–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson P, Lund SP, Kristiansen G, Andersen O, Vogel U, Wallin H et al. An experimental protocol for maternal pulmonary exposure in developmental toxicology. Basic Clin Pharmacol Toxicol. 2011;108.

  • Hadrup N, Guldbrandsen M, Terrida E, Bendtsen KMS, Hougaard KS, Jacobsen NR, et al. Intratracheal instillation for the testing of pulmonary toxicity in mice—Effects of instillation devices and feed type on inflammation. Anim Model Exp Med. 2025;8:378–86.

    Article 
    CAS 

    Google Scholar
     

  • Jackson P, Pedersen LM, Kyjovska ZO, Jacobsen NR, Saber AT, Hougaard KS et al. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay. Mutagenesis. 2013;28.

  • Talete srl. Milano, Italy http://talete.mi.it/. Dragon Software for Molecular Descriptor Calculation. 2014.

  • Di Ianni E, Erdem JS, Narui S, Wallin H, Lynch I, Vogel U, et al. Pro-inflammatory and genotoxic responses by metal oxide nanomaterials in alveolar epithelial cells and macrophages in submerged condition and air-liquid interface: an in vitro-in vivo correlation study. Toxicol in Vitro. 2024;100:105897.

    Article 
    PubMed 

    Google Scholar
     

  • Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, et al. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnol. 2024;22:252.

    Article 

    Google Scholar
     

  • Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic potential of nanoparticles: structural and functional modifications in DNA. Front Genet. 2021;12.

  • Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E et al. Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (Tio2@msn) in primary peripheral human blood mononuclear cells (pbmc). Nanomaterials. 2021;11.

  • Xuan L, Ju Z, Skonieczna M, Zhou PK, Huang R. Nanoparticles-induced potential toxicity on human health: applications, toxicity mechanisms, and evaluation models. MedComm. 2023;4.

  • Xuan Y, Zhang W, Zhu X, Zhang S. An updated overview of some factors that influence the biological effects of nanoparticles. Front Bioeng Biotechnol. 2023;11.

  • Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y et al. Nanomaterials and their impact on the immune system. Int J Mol Sci. 2023;24.

  • Summer M, Ashraf R, Ali S, Bach H, Noor S, Noor Q, et al. Inflammatory response of nanoparticles: mechanisms, consequences, and strategies for mitigation. Chemosphere. 2024;363:142826.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P et al. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol. 2014;34.

  • Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, et al. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discover Nano. 2024;19:165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P et al. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci. 2023;11.

  • Balfourier A, Marty AP, Gazeau F. Importance of metal biotransformation in cell response to metallic nanoparticles: A transcriptomic Meta-analysis study. ACS Nanosci Au. 2023;3.

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13.

  • Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate in Silico predictions of acute aquatic toxicity for a range of organic chemicals: towards similarity-based machine learning methods. Chemosphere. 2021;280.

  • Gajewicz-Skretna A, Kar S, Piotrowska M, Leszczynski J. The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models. J Cheminform. 2021;13.

  • core Team R. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.


    Google Scholar
     

  • Hayfield T, Racine JS. The np Package. Relation. 2009.

  • Hayfield T, Racine JS. Nonparametric econometrics: the Np package. J Stat Softw. 2008;27.

  • Wickham H. ggplot2: elegant graphics for data analysis by, Wickham H. Springer New York. 2009.

  • OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)Sar] Models. Transport. 2007.

  • De P, Kar S, Ambure P, Roy K. Prediction reliability of QSAR models: an overview of various validation tools. Arch Toxicol. 2022;96.

  • Gramatica P. Principles of QSAR models validation: internal and external. Environ Chem. 2007;26.

  • Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20.

  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22.

  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29.

  • Mitra I, Saha A, Roy K. Exploring quantitative structure-activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul. 2010;36.

  • Rakhimbekova A, Madzhidov TI, Nugmanov RI, Gimadiev TR, Baskin II, Varnek A. Comprehensive analysis of applicability domains of QSPR models for chemical reactions. Int J Mol Sci. 2020;21.

  • Jaworska J, Nikolova-jeliazkova N, Aldenberg T. QSAR applicability domain Estimation by projection of the training set in descriptor space: A review. Methods. 2005; 33.

  • Boyles M, Murphy F, Mueller W, Wohlleben W, Jacobsen NR, Braakhuis H et al. Development of a standard operating procedure for the DCFH2-DA acellular assessment of reactive oxygen species produced by nanomaterials. Toxicol Mech Methods. 2022;32.

  • Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99.

  • Cosnier F, Seidel C, Valentino S, Schmid O, Bau S, Vogel U et al. Retained particle surface area dose drives inflammation in rat lungs following acute, subacute, and subchronic inhalation of nanomaterials. Part Fibre Toxicol. 2021;18.

  • Di Ianni E, Erdem JS, Møller P, Sahlgren NM, Poulsen SS, Knudsen KB et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol. 2021;18.

  • Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E, et al. Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials: inflammation and DNA strand breaks. Environ Toxicol Pharmacol. 2020;74:103303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran CL, Tantra R, Donaldson K, Stone V, Hankin SM, Ross B et al. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN). J Nanopart Res. 2011;13.

  • Hadrup N, Vogel U, Jacobsen NR. Biokinetics of carbon black, multi-walled carbon nanotubes, cerium oxide, silica, and titanium dioxide nanoparticles after inhalation: a review. Nanotoxicology. 2024;18:678–706.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modrzynska J, Berthing T, Ravn-Haren G, Jacobsen NR, Weydahl IK, Loeschner K et al. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part Fibre Toxicol. 2018;15.

  • Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29.

  • Knudsen KB, Berthing T, Jackson P, Poulsen SS, Mortensen A, Jacobsen NR et al. Physicochemical predictors of Multi-Walled carbon Nanotube–induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled carbon nanotubes in mice. Basic Clin Pharmacol Toxicol. 2019;124.

  • Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K et al. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnol. 2023;21.

  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A et al. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 2014;11.

  • Saleh DM, Alexander WT, Numano T, Ahmed OHM, Gunasekaran S, Alexander DB et al. Comparative carcinogenicity study of a thick, straight-type and a thin, tangled-type multi-walled carbon nanotube administered by intra-tracheal instillation in the rat. Part Fibre Toxicol. 2020;17.

  • Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S et al. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol. 2022;19.

  • Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31.

  • Lee JH, Ju JE, Kim B, Il, Pak PJ, Choi EK, Lee HS et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33.

  • Cai X, Dong J, Liu J, Zheng H, Kaweeteerawat C, Wang F et al. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat Commun. 2018;9.

  • Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation. 2010;33.

  • Halappanavar S, Sharma M, Solorio-Rodriguez S, Wallin H, Vogel U, Sullivan K et al. Substance interaction with the pulmonary resident cell membrane components leading to pulmonary fibrosis. OECD Series on Adverse Outcome Pathways, No. 33, OECD Publishing, Paris, https://doi.org/10.1787/10372cb8-en. 2023.

  • Cho W, Duffin R, Poland CA, Howie SEM, Macnee W, Bradley M. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health. 2010;118.

  • Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M et al. Metal/metal oxide nanoparticles: toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021;8.

  • Mahto SK, Yoon TH, Rhee SW. A new perspective on in vitro assessment method for evaluating quantum Dot toxicity by using microfluidics technology. Biomicrofluidics. 2010;4.

  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311.

  • Bengtson S, Kling K, Madsen AM, Noergaard AW, Jacobsen NR, Clausen PA et al. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ Mol Mutagen. 2016;57.

  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H et al. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen. 2015;56.

  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261.

  • Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomed. 2015;10.

  • Poulsen SS, Saber AT, Mortensen A, Szarek J, Wu D, Williams A et al. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease. Toxicol Appl Pharmacol. 2015;283.

  • Købler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk CL et al. Time-Dependent subcellular distribution and effects of carbon nanotubes in lungs of mice. PLoS ONE. 2015;10.

  • Poulsen SS, Bengtson S, Williams A, Jacobsen NR, Troelsen JT, Halappanavar S et al. A transcriptomic overview of lung and liver changes one day after pulmonary exposure to graphene and graphene oxide. Toxicol Appl Pharmacol. 2021;410.

  • Bendtsen KM, Brostrøm A, Koivisto AJ, Koponen I, Berthing T, Bertram N et al. Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Part Fibre Toxicol. 2019;16.

  • Visani de Luna LA, Loret T, He Y, Legnani M, Lin H, Galibert AM et al. Pulmonary toxicity of Boron nitride nanomaterials is aspect ratio dependent. ACS Nano. 2023;17.

  • Jagiello K, Halappanavar S, Rybińska-Fryca A, Willliams A, Vogel U, Puzyn T. Transcriptomics-Based and AOP-Informed Structure–Activity relationships to predict pulmonary pathology induced by multiwalled carbon nanotubes. Small. 2021;17.

  • Le TC, Yin H, Chen R, Chen Y, Zhao L, Casey PS et al. An experimental and computational approach to the development of ZnO nanoparticles that are safe by design. Small. 2016;12.

  • Gernand JM, Casman EA. A meta-analysis of carbon nanotube pulmonary toxicity studies-how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Anal. 2014;34.

  • Verdon R, Stone V, Murphy F, Christopher E, Johnston H, Doak S et al. The application of existing genotoxicity methodologies for grouping of nanomaterials: towards an integrated approach to testing and assessment. Part Fibre Toxicol. 2022;19.

  • Mesárošová M, Kozics K, Bábelová A, Regendová E, Pastorek M, Vnuková D et al. The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett. 2014;226.

  • Haixia X, de Barros AO, da Mello SE, VC F, Sozzi-Guo F, Müller C, Gemini-Piperni S et al. Graphene: Insights on Biological, Radiochemical and Ecotoxicological Aspects. J Biomed Nanotechnol. 2021;17.

  • Raies AB, Bajic VB. In Silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6.

  • Ha MK, Trinh TX, Choi JS, Maulina D, Byun HG, Yoon TH. Toxicity classification of oxide nanomaterials: effects of data gap filling and PChem Score-based screening approaches. Sci Rep. 2018;8.

  • Romeo D, Louka C, Gudino B, Wigström J, Wick P. Structure-activity relationship of graphene-related materials: A meta-analysis based on mammalian in vitro toxicity data. NanoImpact. 2022;28.

  • Trinh TX, Choi JS, Jeon H, Byun HG, Yoon TH, Kim J. Quasi-SMILES-Based Nano-Quantitative Structure-Activity relationship model to predict the cytotoxicity of multiwalled carbon nanotubes to human lung cells. Chem Res Toxicol. 2018;31.

  • Furxhi I, Murphy F. Predicting in vitro neurotoxicity induced by nanoparticles using machine learning. Int J Mol Sci. 2020;21.

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *