Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91–9.
Pinn-Woodcock T, Frye E, Guarino C, Franklin-Guild R, Newman AP, Bennett J, Goodrich EL. A one-health review on brucellosis in the united States. J Am Vet Med Assoc. 2023;261(4):451–62.
Zhu S, Zimmerman D, Deem SL. A review of zoonotic pathogens of dromedary camels. EcoHealth. 2019;16(2):356–77.
Aljanazreh B, Alzatari K, Tamimi A, Alsaafeen MH, Hassouneh W, Ashhab Y. Brucellosis re-emergence after a decade of quiescence in Palestine, 2015–2017: A Seroprevalence and molecular characterization study. Transbound Emerg Dis. 2022;69(4):e130–40.
Pereira CR, Cotrim de Almeida JVF, Cardoso de Oliveira IR, Faria de Oliveira L, Pereira LJ, Zangerônimo MG, Lage AP, Dorneles EMS. Occupational exposure to Brucella spp.: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2020;14(5):e0008164.
Hadush A, Pal M. Brucellosis-An infectious re-emerging bacterial zoonosis of global importance. Int J Livest Res. 2013;3(1):28–34.
Chen JD, Ke CW, Deng X, Jiang S, Liang W, Ke BX, Li B, Tan H, Liu M. Brucellosis in Guangdong Province, People’s Republic of China, 2005–2010. Emerg Infect Dis. 2013;19(5):817–8.
Beauvais W, Musallam I, Guitian J. Vaccination control programs for multiple livestock host species: an age-stratified, seasonal transmission model for brucellosis control in endemic settings. Parasit Vectors. 2016;9:55.
Holt HR, Walker M, Beauvais W, Kaur P, Bedi JS, Mangtani P, Sharma NS, Gill JPS, Godfroid J, McGiven J, Guitian J. Modelling the control of bovine brucellosis in India. J R Soc Interface. 2023;20(200):20220756.
Deka RP, Magnusson U, Grace D, et al. Bovine brucellosis: prevalence, risk factors, economic cost and control options with particular reference to India-a review. Infect Ecol Epidemiol. 2018;8(1):1556548.
Mangalgi S, Sajjan A. Comparison of three blood culture techniques in the diagnosis of human brucellosis. J Lab Physicians. 2014;6(1):14–7.
Dal T, Kara SS, Cikman A, Balkan CE, Acıkgoz ZC, Zeybek H, Uslu H, Durmaz R. Comparison of multiplex real-time polymerase chain reaction with serological tests and culture for diagnosing human brucellosis. J Infect Public Health. 2019;12(3):337–42.
Yagupsky P, Morata P, Colmenero JD. Laboratory diagnosis of human brucellosis. Clin Microbiol Rev. 2019;33(1):e00073–19.
McGiven JA. New developments in the immunodiagnosis of brucellosis in livestock and wildlife. Rev Sci Tech. 2013;32(1):163–76.
Cho D, Nam H, Kim J, Heo E, Cho Y, Hwang I, Kim J, Kim J, Jung S, More S. Quantitative Rose Bengal test for diagnosis of bovine brucellosis. J Immunoass Immunochem. 2010;31(2):120–30.
Xu N, Wang W, Chen F, Li W, Wang G. ELISA is superior to bacterial culture and agglutination test in the diagnosis of brucellosis in an endemic area in China. BMC Infect Dis. 2020;20(1):11.
Tabatabai LB, Deyoe BL. Specific enzyme-linked immunosorbent assay for detection of bovine antibody to Brucella abortus. J Clin Microbiol. 1984;20(2):209–13.
Özdemir M, Feyzioğlu B, Kurtoğlu MG, Doğan M, Dağı HT, Yüksekkaya Ş, Keşli R, Baysal B. A comparison of immuncapture agglutination and ELISA methods in serological diagnosis of brucellosis. Int J Med Sci. 2011;8(5):428–32.
Dong SB, Xiao D, Liu JY, Bi HM, Zheng ZR, Wang LD, Yang XW, Tian GZ, Zhao HY, Piao DR, Xing ZF, Jiang H. Fluorescence polarization assay improves the rapid detection of human brucellosis in China. Infect Dis Poverty. 2021;10(1):46.
Nielsen K, Gall D. Fluorescence polarization assay for the diagnosis of brucellosis: a review. J Immunoass Immunochem. 2001;22(3):183–201.
Prakash C, Kumar B, Singh RP, Singh P, Shrinet G, Das A, Ashmi M, Abhishek, Singh KP, Singh MK, Gupta VK. Development and evaluation of a gold nanoparticle based lateral flow assay (LFA) strip test for detection of Brucella spp. J Microbiol Methods. 2021;184:106185.
Shi F, Sun Y, Wu Y, Zhu M, Feng D, Zhang R, Peng L, Chen C. A novel, rapid and simple method for detecting brucellosis based on rapid vertical flow technology. J Appl Microbiol. 2020;128(3):794–802.
Yohannes M, Gill JP, Ghatak S, Singh DK, Tolosa T. Comparative evaluation of the Rose Bengal plate test, standard tube agglutination test and complement fixation test for the diagnosis of human brucellosis. Rev Sci Tech. 2012;31(3):979–84.
Hekmatimoghaddam S, Sadeh M, Khalili MB, Mollaabedin M, Sazmand A. Comparison of PCR, Wright agglutination test and blood culture for diagnosis of brucellosis in suspected patients. Pak J Biol Sci. 2013;16(22):1589–92.
Shemesh AA, Yagupsky P. Limitations of the standard agglutination test for detecting patients with Brucella melitensis bacteremia. Vector Borne Zoonotic Dis. 2011;11(12):1599–601.
Nielsen K, Smith P, Gall D, Perez B, Cosma C, Mueller P, Trottier J, Cote G, Boag L, Bosse J. Development and validation of an indirect enzyme immunoassay for detection of antibody to Brucella abortus in milk. Vet Microbiol. 1996;52(1–2):165–73.
Espasandin AG, Cipolini MF, Forletti A, Díaz S, Soto J, Martínez DE, Storani CA, Monzón NM, Beltrame JI, Lucchesi E, Soto P. Comparison of serological techniques for the diagnosis of equine infectious Anemia in an endemic area of Argentina. J Virol Methods. 2021;291:114101.
Rahbar M, Zou S, Baharfar M, Liu G. A customized microfluidic Paper-Based platform for colorimetric Immunosensing: demonstrated via hCG assay for pregnancy test. Biosens (Basel). 2021;11(12):474.
Cao L, Fang C, Zeng R, Zhao X, Jiang Y, Chen Z. Paper-based microfluidic devices for electrochemical Immunofiltration analysis of human chorionic gonadotropin. Biosens Bioelectron. 2017;92:87–94.
Komatsu T, Sato Y, Maeki M, Ishida A, Tani H, Tokeshi M. Rapid, sensitive universal paper-based device enhances competitive immunoassays of small molecules. Anal Chim Acta. 2021;1144:85–95.
Hristov DR, Rodriguez-Quijada C, Gomez-Marquez J, Hamad-Schifferli K. Designing Paper-Based immunoassays for biomedical applications. Sens (Basel). 2019;19(3):554.
Zuo JY, Jiao YJ, Zhu J, Ding SN. Rapid detection of severe fever with thrombocytopenia syndrome virus via colloidal gold immunochromatography assay. ACS Omega. 2018;3(11):15399–406.
Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey JJ, George I, Gandra S, Sinha P, Storch GA, Parikh BA, Genin GM, Singamaneni S. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat Biomed Eng. 2023;7(12):1556–70.
Salminen T, Juntunen E, Talha SM, Pettersson K. High-sensitivity lateral flow immunoassay with a fluorescent lanthanide nanoparticle label. J Immunol Methods. 2019;465:39–44.
A portable. And universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta. 2019;201:126–33.
Song X, Knotts M. Time-resolved luminescent lateral flow assay technology. Anal Chim Acta. 2008;626(2):186–92.
Chen Y, Fu Q, Xie J, Wang H, Tang Y. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of Zearalenone. Anal Bioanal Chem. 2019;411(10):2169–75.
Danthanarayana AN, Finley E, Vu B, Kourentzi K, Willson RC, Brgoch J. A multicolor multiplex lateral flow assay for high-sensitivity analyte detection using persistent luminescent nanophosphors. Anal Methods. 2020;12(3):272–80.
He W, Wang M, Cheng P, et al. Recent advances of upconversion nanoparticles-based lateral flow assays for point-of-care testing. TRAC Trends Anal Chem. 2024;176:117735.
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived emissive probes for Time-Resolved photoluminescence bioimaging and biosensing. Chem Rev. 2018;118(4):1770–839.
Gao S, Niu L, Zhou R, Wang C, Zheng X, Zhang D, Huang X, Guo Z, Zou X. Significance of the antibody orientation for the lateral flow immunoassays: A mini-review. Int J Biol Macromol. 2024;257(Pt 1):128621.
Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ, Zhang GG, Liu M, Lai WH. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron. 2017;91:95–103.
Yang X, Wang Y, Liu Y, Huang J, Tan Q, Ying X, Hu Y, Li S. A Label-Based polymer nanoparticles biosensor combined with Loop-Mediated isothermal amplification for rapid, sensitive, and highly specific identification of Brucella abortus. Front Bioeng Biotechnol. 2021;9:758564.
Chen H, Cui C, Ma X, et al. Amperometric biosensor for Brucella testing through molecular orientation technology in combination with signal amplification technology. ChemElectroChem. 2020;7(12):2672–9.
Pasquardini L, Cennamo N, Arcadio F, Perri C, Chiodi A, D’agostino G, Zeni L. Immuno-SPR biosensor for the detection of Brucella abortus. Sci Rep. 2023;13(1):22832.
Li S, Liu Y, Wang Y, Wang M, Liu C, Wang Y. Rapid detection of Brucella spp. And elimination of carryover using multiple cross displacement amplification coupled with Nanoparticles-Based lateral flow biosensor. Front Cell Infect Microbiol. 2019;9:78.
Chen H, Liu H, Cui C, Zhang W, Zuo Y. Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for Brucella testing in milk. J Food Sci Technol. 2022;59(12):4653–62.
Nielsen K, Smith P, Yu WL, Elmgren C, Nicoletti P, Perez B, Bermudez R, Renteria T. Second generation competitive enzyme immunoassay for detection of bovine antibody to Brucella abortus. Vet Microbiol. 2007;124(1–2):173–7.
Shi F, Tang Y, Xu ZH, Sun YX, Ma MZ, Chen CF. Visual typing detection of brucellosis with a lateral flow immunoassay based on coloured latex microspheres. J Appl Microbiol. 2022;132(1):199–208.
Lu J, Wu Z, Liu B, Wang C, Wang Q, Zhang L, Wang Z, Chen C, Fu Y, Lia C, Lia T. A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans. J Pharm Biomed Anal. 2021;200:114071.