Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems | Journal of Nanobiotechnology


  • Ledley FD. Pharmaceutical approach to somatic gene therapy. Pharm Res. 1996;13:1595–614.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun. 2024;15:8172.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther. 2024;9:316.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther. 2024;9:200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev. 2021;179:113999.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garbayo E, El Moukhtari SH, Rodriguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prosper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev. 2024;214:115448.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu D, Kim WJ, Lee H, Bao X, Kim P. Engineering CAR-T therapeutics for enhanced solid tumor targeting. Adv Mater. 2025;e2414882.

  • Park M, Lim J, Lee S, Nah Y, Kang Y, Kim WJ. Nanoparticle-Mediated explosive Anti-PD-L1 factory built in tumor for advanced immunotherapy. Adv Mater. 2025;e2417735.

  • Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev. 2024;211:115354.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug coordination nanoparticles and hydrogels for enhanced delivery. Adv Mater. 2024;36:e2404053.

    Article 
    PubMed 

    Google Scholar
     

  • Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupicky D. Beyond lipids: exploring advances in polymeric gene delivery in the lipid nanoparticles era. Adv Mater. 2024;36:e2404608.

    Article 
    PubMed 

    Google Scholar
     

  • Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. Exploration. 2024.

  • Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric nanoparticles for drug delivery. Chem Rev. 2024;124:5505–616.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for Tissue-Specific drug delivery. Cell. 2020;181:151–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Piotrowski-Daspit AS, Bracaglia LG, Eaton DA, Richfield O, Binns TC, Albert C, Gould J, Mortlock RD, Egan ME, Pober JS, Saltzman WM. Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys. Nat Commun. 2024;15:4247.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang MZ, Niu J, Ma HJ, Dad HA, Shao HT, Yuan TJ, Peng LH. Transdermal SiRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J Control Release. 2020;322:95–107.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X, Zhao Y, Li J, Mi S, Huo H, et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat Commun. 2024;15:9471.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen K, Han H, Zhao S, Xu B, Yin B, Lawanprasert A, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Nat Biotechnol. 2024.

  • Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121:e2307800120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han X, Gong N, Xue L, Billingsley MM, El-Mayta R, Shepherd SJ, Alameh MG, Weissman D, Mitchell MJ. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun. 2023;14:75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci. 2024;193:106688.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci. 2022;43:151–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Papke B, Van Swearingen AE, Feng AY, Azam SH, Harrison EB, Yang R, Cox AD, Der CJ, Pecot CV. Abstract B32: Silencing of oncogenic KRAS by a mutant-favoring short interfering RNA. Mol Cancer Res. 2020;18:B32–32.

    Article 

    Google Scholar
     

  • Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang X-J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resist. 2024;7:24.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next-Generation vaccines: Nanoparticle-Mediated DNA and mRNA delivery. Adv Healthc Mater. 2021;10:e2001812.

    Article 
    PubMed 

    Google Scholar
     

  • Zahed Z, Hadi R, Imanzadeh G, Ahmadian Z, Shafiei S, Zadeh AZ, Karimi H, Akbarzadeh A, Abbaszadeh M, Ghadimi LS. Recent advances in fluorescence nanoparticles quantum Dots as gene delivery system: A review. Int J Biol Macromol. 2024;254:127802.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile Bio-Synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. 2020;15:275–300.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol. 2019;47:4222–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khutale GV, Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur J Pharm Biopharm. 2017;119:372–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chuang CC, Cheng CC, Chen PY, Lo C, Chen YN, Shih MH, Chang CW. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomed. 2019;14:181–93.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H. Polydopamine-Assisted silver nanoparticle Self-Assembly on Sericin/Agar film for potential wound dressing application. Int J Mol Sci. 2018;19.

  • Wojnicki M, Luty-Błocho M, Kotańska M, Wytrwal M, Tokarski T, Krupa A, Kołaczkowski M, Bucki A, Kobielusz M. Novel and effective synthesis protocol of AgNPs functionalized using L-cysteine as a potential drug carrier. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:123–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free mesoporous silica nanoparticles: A streamlined strategy for targeted drug delivery across the Blood-Brain barrier. ACS Nano. 2024;18:12716–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces. 2017;9:23466–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou XF, Zhuang YC, Zhang MH, Sheng H, Sun QF, He L. Relativistic artificial molecule of two coupled graphene quantum Dots at tunable distances. Nat Commun. 2024;15:8786.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zuo H, Chen W, Cooper HM, Xu ZP. A facile way of modifying layered double hydroxide nanoparticles with targeting Ligand-Conjugated albumin for enhanced delivery to brain tumour cells. ACS Appl Mater Interfaces. 2017;9:20444–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc. 2006;128:36–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu ZP, Stevenson G, Lu CQ, Lu GQ. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J Phys Chem B. 2006;110:16923–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine. Small Methods. 2020;4:1900343.

    Article 
    CAS 

    Google Scholar
     

  • Gao C, Jiang J, Zhao J, Xu ZP, Zhang L. Engineered nano-aluminum adjuvant for cancer immunotherapy: progress, challenges and opportunities towards preclinical/clinical application. Coord Chem Rev. 2024;519:216109.

    Article 
    CAS 

    Google Scholar
     

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and MicroRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, Lucks JB, Hultquist JF, Leonard JN. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat Biomed Eng. 2024;8:397–414.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of SiRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonsergent E, Grisard E, Buchrieser J, Schwartz O, Théry C, Lavieu G. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat Commun. 2021;12:1864.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng L, Hill AF. Therapeutically Harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled drug delivery systems. Chem Rev. 2019;119:6459–506.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, Cai Z, Ma W, Bai L, Luo E, Lin Y. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of Curcumin and alleviation of diabetic osteoporosis. Bone Res. 2024;12:14.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang K. Spatially controlled DNA frameworks for sensitive detection and specific isolation of tumor cells. Angew Chem Int Ed Engl. 2024;63:e202411382.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sellner S, Kocabey S, Nekolla K, Krombach F, Liedl T, Rehberg M. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials. 2015;53:453–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhuang X, Ma X, Xue X, Jiang Q, Song L, Dai L, Zhang C, Jin S, Yang K, Ding B, et al. A Photosensitizer-Loaded DNA Origami nanosystem for photodynamic therapy. ACS Nano. 2016;10:3486–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pan Q, Nie C, Hu Y, Yi J, Liu C, Zhang J, He M, He M, Chen T, Chu X. Aptamer-Functionalized DNA Origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in Drug-Resistant Cancer cells. ACS Appl Mater Interfaces. 2020;12:400–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46:4218–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:339.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: from cellular uptake to Mechanobiological responses. Int J Mol Sci. 2021;22:9587.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abdulrahman A, Ghanem A. Recent advances in chromatographic purification of plasmid DNA for gene therapy and DNA vaccines: A review. Anal Chim Acta. 2018;1025:41–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release. 2007;118:262–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Togashi R, Tanaka H, Nakamura S, Yokota H, Tange K, Nakai Y, Yoshioka H, Harashima H, Akita H. A hepatic pDNA delivery system based on an intracellular environment sensitive vitamin E-scaffold lipid-like material with the aid of an anti-inflammatory drug. J Control Release. 2018;279:262–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20:41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L, et al. Rapid surface display of mRNA antigens by Bacteria-Derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater. 2022;34:e2109984.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto VP, Lächelt U, et al. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. Exploration. 2024;4:20210146.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov. 2024;23:709–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA vaccine against SARS-CoV-2 – Preliminary report. N Engl J Med. 2020;383:1920–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based Cancer vaccines: advancements and prospects. Nano Lett. 2024;24:12711–21.

    CAS 

    Google Scholar
     

  • Li Z, Zhang XQ, Ho W, Li F, Gao M, Bai X, Xu X. Enzyme-Catalyzed One-Step synthesis of ionizable cationic lipids for lipid Nanoparticle-Based mRNA COVID-19 vaccines. ACS Nano. 2022;16:18936–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li B, Luo X, Deng B, Wang J, McComb DW, Shi Y, Gaensler KM, Tan X, Dunn AL, Kerlin BA, Dong Y. An orthogonal array optimization of Lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015;15:8099–107.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol Pharm. 2020;17:1996–2005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rizvi F, Everton E, Smith AR, Liu H, Osota E, Beattie M, Tam Y, Pardi N, Weissman D, Gouon-Evans V. Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nat Commun. 2021;12:613.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Philipp J, Dabkowska A, Reiser A, Frank K, Krzyszton R, Brummer C, Nickel B, Blanchet CE, Sudarsan A, Ibrahim M, et al. pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proc Natl Acad Sci U S A. 2023;120:e2310491120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.

    Article 
    PubMed 

    Google Scholar
     

  • LoPresti ST, Arral ML, Chaudhary N, Whitehead KA. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J Control Release. 2022;345:819–31.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP 3rd, Hou S, Esposito AA, Ketova T, Welsher K, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun. 2020;11:983.

  • Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska K, Huayamares SG, Hua X, Han K, Loughrey D, et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc Natl Acad Sci U S A. 2024;121:e2307801120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12:6777.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li B, Manan RS, Liang SQ, Gordon A, Jiang A, Varley A, Gao G, Langer R, Xue W, Anderson D. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol. 2023;41:1410–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bannigan P, Aldeghi M, Bao Z, Hase F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev. 2021;175:113806.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang W, Chen K, Jiang T, Wu Y, Wu Z, Ying H, Yu H, Lu J, Lin J, Ouyang D. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat Commun. 2024;15:10804.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F, Golubovic A, Zhou M, Wang KC, Varley A, et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat Commun. 2024;15:6305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361:360–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu K, Sun X, Jia L, Ma J, Xing H, Wu J, Gao H, Sun Y, Boulnois F, Fan J. Chemi-net: a molecular graph convolutional network for accurate drug property prediction. Int J Mol Sci. 2019;20:3389.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gu Y, Chen J, Wang Z, Liu C, Wang T, Kim CJ, Durikova H, Fernandes S, Johnson DN, De Rose R, et al. mRNA delivery enabled by metal-organic nanoparticles. Nat Commun. 2024;15:9664.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B. 2024;14:4665–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang L, Bai J, Shen A, Zhao J, Su Z, Wang M, Dong M, Xu ZP. Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy. Biomaterials. 2025;317:123085.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P, Lu E, Brosnan CA, Xu ZP, Mitter N. Foliar application of clay-delivered RNA interference for whitefly control. Nat Plants. 2022;8:535–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yong J, Wu M, Zhang R, Bi S, Mann CWG, Mitter N, Carroll BJ, Xu ZP. Clay nanoparticles efficiently deliver small interfering RNA to intact plant leaf cells. Plant Physiol. 2022;190:2187–202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, Brosnan CA, Mitter N, Carroll BJ, Xu ZP. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants. Nat Plants. 2025;11:131–44.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska AB, Santaniello A, Piaggesi A, et al. Exogenous MiRNAs induce post-transcriptional gene Silencing in plants. Nat Plants. 2021;7:1379–88.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release. 2022;342:228–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haussecker D, Kay MA. RNA interference. Drugging RNAi. Science. 2015;347:1069–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Tian Y, Liu L, Chen C, Zhang W, Wang L, Guo Q, Ding L, Fu H, Song H, et al. Precise targeting therapy of orthotopic gastric carcinoma by SiRNA and chemotherapeutic drug codelivered in pH-Sensitive nano platform. Adv Healthc Mater. 2021;10:e2100966.

    Article 
    PubMed 

    Google Scholar
     

  • Tang X, Sheng Q, Xu C, Li M, Rao J, Wang X, Long Y, Tao Y, He X, Zhang Z, He Q. pH/ATP cascade-responsive nano-courier with efficient tumor targeting and SiRNA unloading for photothermal-immunotherapy. Nano Today. 2021;37:101083.

    Article 
    CAS 

    Google Scholar
     

  • Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y, Liu S, Zhao G, et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat Nanotechnol. 2019;14:388–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of SiRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18:193–204.

    Article 
    PubMed 

    Google Scholar
     

  • Li M, Sun J, Zhang W, Zhao Y, Zhang S, Zhang S. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym. 2021;251:117103.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mi Y, Mu C, Wolfram J, Deng Z, Hu TY, Liu X, Blanco E, Shen H, Ferrari M. A micro/nano composite for combination treatment of melanoma lung metastasis. Adv Healthc Mater. 2016;5:936–46.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Z, Li Y, Liu H, Jain A, Patel PV, Cheng K. Co-delivery of IKBKE SiRNA and Cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci Adv. 2020;6:eabb0616.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-Based strategies for SiRNA brain delivery for disease therapy. Trends Biotechnol. 2018;36:562–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Wu T, Shan Y, Li G, Ni X, Chen X, Hu X, Lin L, Li Y, Guan Y, et al. Therapeutic reversal of Huntington’s disease by in vivo self-assembled SiRNAs. Brain. 2021;144:3421–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Hou S, Movahedi F, Li Z, Li L, Hu J, Jia Y, Huang Y, Zhu J, Sun X, et al. Amyloid-β/Tau burden and neuroinflammation dual-targeted nanomedicines synergistically restore memory and recognition of Alzheimer’s disease mice. Nano Today. 2023;49:101788.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Qin J, Yu D, Liu Y, Song D, Tian K, Chen H, Ye Q, Wang X, Xu T, et al. Polymer-locking fusogenic liposomes for glioblastoma-targeted SiRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2024;19:1869–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahn I, Kang CS, Han J. Where should SiRNAs go: applicable organs for SiRNA drugs. Exp Mol Med. 2023;55:1283–92.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Ma H, Li L, Sun C, Yu C, Wang L, Xu D, Song X, Yu R. Dual-Targeted novel Temozolomide nanocapsules encapsulating siPKM2 inhibit aerobic Glycolysis to sensitize glioblastoma to chemotherapy. Adv Mater. 2024;36:e2400502.

    Article 
    PubMed 

    Google Scholar
     

  • Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular vesicle (EVs) associated Non-Coding RNAs in lung Cancer and therapeutics. Int J Mol Sci. 2022;23.

  • Moro M, Di Paolo D, Milione M, Centonze G, Bornaghi V, Borzi C, Gandellini P, Perri P, Pastorino U, Ponzoni M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release. 2019;308:44–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng Y, Zhu X, Qiu L. Electroneutral composite polymersomes self-assembled by amphiphilic polyphosphazenes for effective miR-200c in vivo delivery to inhibit drug resistant lung cancer. Biomaterials. 2016;106:1–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perepelyuk M, Maher C, Lakshmikuttyamma A, Shoyele SA. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomed. 2016;11:3533–44.

    Article 
    CAS 

    Google Scholar
     

  • Mendonca MCP, Kont A, Aburto MR, Cryan JF, O’Driscoll CM. Advances in the design of (Nano)Formulations for delivery of antisense oligonucleotides and small interfering RNA: focus on the central nervous system. Mol Pharm. 2021;18:1491–506.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20:427–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng X, Yu D, Cheng G, Yung BC, Liu Y, Li H, Kang C, Fang X, Tian S, Zhou X, et al. T7 Peptide-Conjugated lipid nanoparticles for dual modulation of Bcl-2 and Akt-1 in lung and cervical carcinomas. Mol Pharm. 2018;15:4722–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee SJ, Lim JH, Choi YH, Kim WJ, Moon SK. Interleukin-28A triggers wound healing migration of bladder cancer cells via NF-κB-mediated MMP-9 expression inducing the MAPK pathway. Cell Signal. 2012;24:1734–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting LncRNA MALAT1 inhibits Cancer metastasis. ACS Appl Mater Interfaces. 2019;11:37–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene Silencing. Mitochondrion. 2019;49:178–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, Duan X, Zhang F, Xie M, Le H, et al. Nanomedicine directs neuronal differentiation of neural stem cells via Silencing long noncoding RNA for stroke therapy. Nano Lett. 2021;21:806–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen L, Li G, Wang X, Li J, Zhang Y. Spherical nucleic acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and antisense oligonucleotide. ACS Nano. 2021;15:11929–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Agarwal C. A review: CRISPR/Cas12-mediated genome editing in fungal cells: advancements, mechanisms, and future directions in plant-fungal pathology. ScienceOpen Res. 2023.

  • Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol. 2011;14:321–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jia Z, Zhang Y, Zhang C, Wei X, Zhang M. Biosensing intestinal alkaline phosphatase by pregnancy test strips based on target-triggered CRISPR-Cas12a activity to monitor intestinal inflammation. Anal Chem. 2023;95:14111–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39:717–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hughes TS, Langer SJ, Virtanen SI, Chavez RA, Watkins LR, Milligan ED, Leinwand LA. Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression. J Gene Med. 2009;11:782–90.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang L, Wang P, Feng Q, Wang N, Chen Z, Huang Y, Zheng W, Jiang X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017;9:e441–441.

    Article 
    CAS 

    Google Scholar
     

  • Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, Du XJ, Yang XZ, Gu Z, Wang J. Macrophage-Specific in vivo gene editing using cationic Lipid-Assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo YL, Liang LF, Gan YJ, Liu J, Zhang Y, Fan YN, Zhao G, Czarna A, Lu ZD, Du XJ, et al. An All-in-One nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance. ACS Appl Mater Interfaces. 2020;12:48259–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan X, Pan Q, Xin H, Chen Y, Ping Y. Genome-editing prodrug: targeted delivery and conditional stabilization of CRISPR-Cas9 for precision therapy of inflammatory disease. Sci Adv. 2021;7:eabj0624.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, et al. Thermo-triggered release of CRISPR-Cas9 system by Lipid-Encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl. 2018;57:1491–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng. 2019;3:126–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li J, Hao Y, Pan H, Zhang Y, Cheng G, Liu B, Chang J, Wang H. CRISPR-dcas9 optogenetic nanosystem for the blue Light-Mediated treatment of neovascular lesions. ACS Appl Bio Mater. 2021;4:2502–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, Yang Z, Zhu S, He L, Fan W, Tang W, Zou J, Shen Z, Zhang M, Tang L, et al. A rationally designed semiconducting polymer brush for NIR-II Imaging-Guided Light-Triggered remote control of CRISPR/Cas9 genome editing. Adv Mater. 2019;31:e1901187.

    Article 
    PubMed 

    Google Scholar
     

  • Tang H, Xu X, Chen Y, Xin H, Wan T, Li B, Pan H, Li D, Ping Y. Reprogramming the tumor microenvironment through Second-Near-Infrared-Window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced Cancer immunotherapy. Adv Mater. 2021;33:e2006003.

    Article 
    PubMed 

    Google Scholar
     

  • Alsaiari SK, Eshaghi B, Du B, Kanelli M, Li G, Wu X, Zhang L, Chaddah M, Lau A, Yang X, et al. CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells. Nat Rev Mater. 2024;10:44–61.

    Article 

    Google Scholar
     

  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang X, Li B, Luo X, Zhao W, Jiang J, Zhang C, Gao M, Chen X, Dong Y. Biodegradable Amino-Ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9:25481–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20:701–10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, Xu Q. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci U S A. 2021;118.

  • Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. CES1-Triggered Liver-Specific cargo release of CRISPR/Cas9 elements by cationic triadic copolymeric nanoparticles targeting gene editing of PCSK9 for hyperlipidemia amelioration. Adv Sci (Weinh). 2023;10:e2300502.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv. 2020;6.

  • Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22:2227–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gautam M, Jozic A, Su GL, Herrera-Barrera M, Curtis A, Arrizabalaga S, Tschetter W, Ryals RC, Sahay G. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat Commun. 2023;14:6468.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ. Non-Viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle Co-Delivery of Cas9 mRNA and SgRNA. Angewandte Chemie (International Ed English). 2017;56:1059–63.

    Article 
    CAS 

    Google Scholar
     

  • Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11:3232.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc Chem Res. 2019;52:665–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, Li M, Khashab NM. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140:143–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, Huang F, Wu C, Ping Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J Control Release. 2020;322:236–47.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5:eaaw8922.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng S, Li X, Liu S, Chen J, Li M, Chew SY, Leong KW, Cheng D. Codelivery of CRISPR-Cas9 and Chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv. 2020;6:eabb4005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. 2020;38:44–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee J, Kang YK, Oh E, Jeong J, Im SH, Kim DK, Lee H, Kim S-G, Jung K, Chung HJ. Nano-assembly of a chemically tailored Cas9 ribonucleoprotein for in vivo gene editing and Cancer immunotherapy. Chem Mater. 2022;34:547–61.

    Article 
    CAS 

    Google Scholar
     

  • Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, Wang H, Gong J, Palumbo CD, Ashton JM, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Sci Adv. 2021;7:eabg3217.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7:eabe2888.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Q, Wang C, Zheng Y, Zhao Y, Wang Y, Hao J, Zhao X, Yi K, Shi L, Kang C, Liu Y. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials. 2020;258:120275.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan Y, Yang J, Luan X, Liu X, Li X, Yang J, Huang T, Sun L, Wang Y, Lin Y, Song Y. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Sci Adv. 2019;5:eaav7199.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen X, Chen Y, Xin H, Wan T, Ping Y. Near-infrared optogenetic engineering of photothermal NanoCRISPR for programmable genome editing. Proc Natl Acad Sci U S A. 2020;117:2395–405.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peng LH, Wang MZ, Chu Y, Zhang L, Niu J, Shao HT, Yuan TJ, Jiang ZH, Gao JQ, Ning XH. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Sci Adv. 2020;6:eaba2735.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Yan G, Xiao Q, Zhou N, Chen H-R, Xia W, Peng L. Iontophoresis-driven microneedle arrays delivering Transgenic outer membrane vesicles in program that stimulates transcutaneous vaccination for Cancer immunotherapy. Small Sci. 2023;3.

  • Zhao M, Cheng X, Shao P, Dong Y, Wu Y, Xiao L, Cui Z, Sun X, Gao C, Chen J, et al. Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy. Nat Commun. 2024;15:950.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Westin J, Sehn LH. CAR T cells as a second-line therapy for large B-cell lymphoma: a paradigm shift? Blood J Am Soc Hematol. 2022;139:2737–46.

    CAS 

    Google Scholar
     

  • Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan C-x, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41:119.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 2022;29:1080–96.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bucher P, Feucht J. LINKing signaling domains to enhance CAR T cells. Nat Cancer. 2023;4:447–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Y, Zhou Y, Zhang M, Zhao H, Wei G, Ge W, Cui Q, Mu Q, Chen G, Han L, et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 2022;32:995–1007.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12:813–20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Su K, Wu S, Lin L, He S, Yan X, Shi L, Liu S. One-Component cationic lipids for systemic mRNA delivery to Splenic T cells. Angew Chem Int Ed Engl. 2024;63:e202405444.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene delivery to human T cells. J Control Release. 2018;282:140–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid Nanoparticle-Mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20:1578–89.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Billingsley MM, Hamilton AG, Mai D, Patel SK, Swingle KL, Sheppard NC, June CH, Mitchell MJ. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 2022;22:533–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in Circulating T cells in vivo. Nat Commun. 2020;11:6080.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McEvoy E, Han YL, Guo M, Shenoy VB. Gap junctions amplify Spatial variations in cell volume in proliferating tumor spheroids. Nat Commun. 2020;11:6148.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36:707–16.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 2018;78:3718–30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and more: innovations in the fourth-generation CAR-T development. Mol Ther. 2023;31:3146–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Uslu U, Castelli S, June CH. CAR T cell combination therapies to treat cancer. Cancer Cell. 2024;42:1319–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu T, Xiao Y, Chen Z, Ding H, Chen S, Jiang G, Huang X. Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung. Nat Commun. 2025;16:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev. 2023;192:114624.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Z, Pan H, Luo Y, Yin T, Zhang B, Liao J, Wang M, Tang X, Huang G, Deng G, et al. Nanoengineered CAR-T biohybrids for solid tumor immunotherapy with microenvironment Photothermal-Remodeling strategy. Small. 2021;17:e2007494.

    Article 
    PubMed 

    Google Scholar
     

  • Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, et al. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv Drug Deliv Rev. 2023;200:114990.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Namiot ED, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Nanoparticles in clinical trials: analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int J Mol Sci. 2023;24.

  • Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of Cancer nanomedicine: success, frustration, and hope. Cancers (Basel). 2019;11.

  • A Phase 1, Open-Label, multicenter study to assess the safety and tolerability of mRNA-5671/V941 as a monotherapy and in combination with pembrolizumab in participants with KRAS mutant advanced or metastatic Non-Small cell lung cancer, colorectal Cancer or pancreatic adenocarcinoma. (ModernaTx I ed.; 2019).

  • Single-Arm A. Open-Label, exploratory study to evaluate the safety of RNA tumor vaccine injection alone/in combination with PD-1 inhibitor in the treatment of advanced solid tumors with KRAS mutation. 2022.

  • A Phase 1, Open-Label, multicenter, dose escalation study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral injection alone and in combination with immune checkpoint Blockade. (AstraZeneca ed.; 2018).

  • Phase A, Ib Open-Label I. Multi-Center, Dose-Escalation study to investigate the safety, pharmacokinetics and preliminary efficacy of intravenous NBF 006 in patients with Non-Small cell lung, pancreatic, or colorectal Cancer followed by a dose expansion study in patients with KRAS-Mutated Non-Small cell lung Cancer. 2019.

  • Prospective A. Open-label, single center, dose finding phase I-study with Atu027 (an SiRNA Formulation) in subjects with advanced solid Cancer. 2009.

  • EphA2 Gene Targeting Using Neutral Liposomal Small Interfering RNA Delivery. A Phase I Clinical Trial. (Gateway for Cancer R, Institutional Funding for Federally Supported Clinical T, National Cancer I eds.); 2012.

  • Multicenter Phase A. I Study of MRX34, MicroRNA miR-RX34 liposomal injection. Cancer Prevention Research Institute of T ed.; 2013.

  • Phase A. I, Dose-Escalating study of the safety of intravenous CALAA-01 in adults with solid tumors refractory to Standard-of-Care therapies. 2008.

  • Phase I. Study of mesenchymal stromal Cells-Derived exosomes with KrasG12D SiRNA for metastatic pancreas Cancer patients harboring KrasG12D mutation. 2018.

  • Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics 2022, 14.

  • Das RP, Gandhi VV, Singh BG, Kunwar A. Passive and active drug targeting: role of nanocarriers in rational design of anticancer formulations. Curr Pharm Des. 2019;25:3034–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Broncy L, Paterlini-Bréchot P. Clinical impact of Circulating tumor cells in patients with localized prostate cancer. Cells. 2019;8:676.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. Sensors. 2009;9:1033–53.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol. 2021;910:174464.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang X-J. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale. 2021;13:7108–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv K, Yu Z, Wang J, Li N, Wang A, Xue T, Wang Q, Shi Y, Han L, Qin W, et al. Discovery of Ketal-Ester ionizable lipid nanoparticle with reduced hepatotoxicity, enhanced spleen tropism for mRNA vaccine delivery. Adv Sci (Weinh). 2024;11:e2404684.

    Article 
    PubMed 

    Google Scholar
     

  • Patil SM, Daram A, Kunda NK. 3D spheroid model reveals enhanced efficacy of mannose-decorated nanoparticles for TB treatment. Nanomed (Lond). 2025;20:777–89.

    Article 

    Google Scholar
     

  • Ou BS, Baillet J, Picece V, Gale EC, Powell AE, Saouaf OM, Yan J, Nejatfard A, Lopez Hernandez H, Appel EA. Nanoparticle-Conjugated Toll-Like receptor 9 agonists improve the potency, durability, and breadth of COVID-19 vaccines. ACS Nano. 2024;18:3214–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee E, Jeon H, Lee M, Ryu J, Kang C, Kim S, Jung J, Kwon Y. Molecular origin of AuNPs-induced cytotoxicity and mechanistic study. Sci Rep. 2019;9:2494.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding K, Jiang HT, Gong YK. Smart MSN-Drug-Delivery system for tumor cell targeting and tumor microenvironment release. ACS Appl Mater Interfaces. 2021;13:42522–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong TY, Yan N, Kwan KKL, Pan Y, Liu J, Xiao Y, Wu L, Lam H. Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticles. J Hazard Mater. 2023;445:130599.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sharma A, Sah N, Kannan S, Kannan RM. Targeted drug delivery for maternal and perinatal health: challenges and opportunities. Adv Drug Deliv Rev. 2021;177:113950.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J, Huang H, Jia M, Chen S, Wang F, He G, Wu C, Lou K, Zheng X, Zhang H, et al. Autologous platelet delivery of SiRNAs by autologous plasma protein self-assembled nanoparticles for the treatment of acute kidney injury. J Nanobiotechnol. 2025;23:256.

    Article 
    CAS 

    Google Scholar
     

  • Yong H, Tian Y, Li Z, Wang C, Zhou D, Liu J, Huang X, Li J. Highly branched Poly(β-amino ester)s for efficient mRNA delivery and nebulization treatment of silicosis. Adv Mater 2025:e2414991.

  • Jakic K, Selc M, Razga F, Nemethova V, Mazancova P, Havel F, Sramek M, Zarska M, Proska J, Masanova V, et al. Long-Term accumulation, biological effects and toxicity of BSA-Coated gold nanoparticles in the mouse liver, spleen, and kidneys. Int J Nanomed. 2024;19:4103–20.

    Article 

    Google Scholar
     

  • Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, Rosu-Myles M, He R, Li X. Subcutaneous immunization with Recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccin Immunother. 2012;8:425–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5:487–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yu K, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, et al. Deep learning enhanced near Infrared-II imaging and Image-Guided small interfering ribonucleic acid therapy of ischemic stroke. ACS Nano. 2025;19:10323–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo S, Agarwal T, Song S, Sarkar K, Zhang LG. Development of novel multi-responsive 4D printed smart nanocomposites with polypyrrole coated iron oxides for remote and adaptive transformation. Mater Horiz 2025.

  • Störtz F, Minary P. CrisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 2021;49:D855–61.

    Article 
    PubMed 

    Google Scholar
     

  • Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. 2019;569:433–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive smart Nanoparticles-Based CRISPR-Cas delivery for therapeutic genome editing. Int J Mol Sci. 2021;22.

  • You S, Zuo L, Li W. Optimizing the time of doxil injection to increase the drug retention in transplanted murine mammary tumors. Int J Nanomed. 2010;5:221–9.

    Article 
    CAS 

    Google Scholar
     

  • Baeza A. Tumor targeted nanocarriers for immunotherapy. Molecules 2020, 25.

  • Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, et al. Mesoporous silica nanoparticles as pH-Responsive carrier for the immune-Activating drug resiquimod enhance the local immune response in mice. ACS Nano. 2021;15:4450–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan SN, Han P, Chaudhury R, Bickerton S, Lee JS, Calderon B, Pellowe A, Gonzalez A, Fahmy T. Direct comparison of B cell surface receptors as therapeutic targets for nanoparticle delivery of BTK inhibitors. Mol Pharm. 2021;18:850–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated Core-Shell hybrid nanovehicles for targeted and pH-Triggered delivery of arsenic trioxide into glioma. Mol Pharm. 2019;16:786–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu X, Yu C, Wu X, Cui Y, Liu X, Jin Y, Li Y, Wang L. Validation of an HPLC-CAD method for determination of lipid content in LNP-Encapsulated COVID-19 mRNA vaccines. Vaccines (Basel). 2023;11.

  • Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials. 2025;317:123047.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, Gong S. pH-Responsive polymer nanoparticles for efficient delivery of Cas9 ribonucleoprotein with or without donor DNA. Adv Mater. 2022;34:2110618.

    Article 
    CAS 

    Google Scholar
     

  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang J, Zhang L, Gao H, Liu Y, Zhang Q, Ran R, Zhang Z, He Q. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Deliv. 2016;23:1130–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Patil V, Patel A. Biodegradable nanoparticles: A recent approach and applications. Curr Drug Targets. 2020;21:1722–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *