Ledley FD. Pharmaceutical approach to somatic gene therapy. Pharm Res. 1996;13:1595–614.
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun. 2024;15:8172.
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther. 2024;9:316.
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther. 2024;9:200.
Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev. 2021;179:113999.
Garbayo E, El Moukhtari SH, Rodriguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prosper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev. 2024;214:115448.
Zhu D, Kim WJ, Lee H, Bao X, Kim P. Engineering CAR-T therapeutics for enhanced solid tumor targeting. Adv Mater. 2025;e2414882.
Park M, Lim J, Lee S, Nah Y, Kang Y, Kim WJ. Nanoparticle-Mediated explosive Anti-PD-L1 factory built in tumor for advanced immunotherapy. Adv Mater. 2025;e2417735.
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev. 2024;211:115354.
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug coordination nanoparticles and hydrogels for enhanced delivery. Adv Mater. 2024;36:e2404053.
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupicky D. Beyond lipids: exploring advances in polymeric gene delivery in the lipid nanoparticles era. Adv Mater. 2024;36:e2404608.
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. Exploration. 2024.
Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric nanoparticles for drug delivery. Chem Rev. 2024;124:5505–616.
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for Tissue-Specific drug delivery. Cell. 2020;181:151–67.
Piotrowski-Daspit AS, Bracaglia LG, Eaton DA, Richfield O, Binns TC, Albert C, Gould J, Mortlock RD, Egan ME, Pober JS, Saltzman WM. Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys. Nat Commun. 2024;15:4247.
Wang MZ, Niu J, Ma HJ, Dad HA, Shao HT, Yuan TJ, Peng LH. Transdermal SiRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J Control Release. 2020;322:95–107.
Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X, Zhao Y, Li J, Mi S, Huo H, et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat Commun. 2024;15:9471.
Chen K, Han H, Zhao S, Xu B, Yin B, Lawanprasert A, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Nat Biotechnol. 2024.
Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121:e2307800120.
Han X, Gong N, Xue L, Billingsley MM, El-Mayta R, Shepherd SJ, Alameh MG, Weissman D, Mitchell MJ. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun. 2023;14:75.
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci. 2024;193:106688.
Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci. 2022;43:151–61.
Papke B, Van Swearingen AE, Feng AY, Azam SH, Harrison EB, Yang R, Cox AD, Der CJ, Pecot CV. Abstract B32: Silencing of oncogenic KRAS by a mutant-favoring short interfering RNA. Mol Cancer Res. 2020;18:B32–32.
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang X-J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resist. 2024;7:24.
Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next-Generation vaccines: Nanoparticle-Mediated DNA and mRNA delivery. Adv Healthc Mater. 2021;10:e2001812.
Zahed Z, Hadi R, Imanzadeh G, Ahmadian Z, Shafiei S, Zadeh AZ, Karimi H, Akbarzadeh A, Abbaszadeh M, Ghadimi LS. Recent advances in fluorescence nanoparticles quantum Dots as gene delivery system: A review. Int J Biol Macromol. 2024;254:127802.
Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile Bio-Synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. 2020;15:275–300.
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol. 2019;47:4222–33.
Khutale GV, Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur J Pharm Biopharm. 2017;119:372–80.
Chuang CC, Cheng CC, Chen PY, Lo C, Chen YN, Shih MH, Chang CW. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomed. 2019;14:181–93.
Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H. Polydopamine-Assisted silver nanoparticle Self-Assembly on Sericin/Agar film for potential wound dressing application. Int J Mol Sci. 2018;19.
Wojnicki M, Luty-Błocho M, Kotańska M, Wytrwal M, Tokarski T, Krupa A, Kołaczkowski M, Bucki A, Kobielusz M. Novel and effective synthesis protocol of AgNPs functionalized using L-cysteine as a potential drug carrier. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:123–30.
Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free mesoporous silica nanoparticles: A streamlined strategy for targeted drug delivery across the Blood-Brain barrier. ACS Nano. 2024;18:12716–36.
An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces. 2017;9:23466–75.
Zhou XF, Zhuang YC, Zhang MH, Sheng H, Sun QF, He L. Relativistic artificial molecule of two coupled graphene quantum Dots at tunable distances. Nat Commun. 2024;15:8786.
Zuo H, Chen W, Cooper HM, Xu ZP. A facile way of modifying layered double hydroxide nanoparticles with targeting Ligand-Conjugated albumin for enhanced delivery to brain tumour cells. ACS Appl Mater Interfaces. 2017;9:20444–53.
Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc. 2006;128:36–7.
Xu ZP, Stevenson G, Lu CQ, Lu GQ. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J Phys Chem B. 2006;110:16923–9.
Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine. Small Methods. 2020;4:1900343.
Gao C, Jiang J, Zhao J, Xu ZP, Zhang L. Engineered nano-aluminum adjuvant for cancer immunotherapy: progress, challenges and opportunities towards preclinical/clinical application. Coord Chem Rev. 2024;519:216109.
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and MicroRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.
Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, Lucks JB, Hultquist JF, Leonard JN. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat Biomed Eng. 2024;8:397–414.
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of SiRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.
Bonsergent E, Grisard E, Buchrieser J, Schwartz O, Théry C, Lavieu G. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat Commun. 2021;12:1864.
Cheng L, Hill AF. Therapeutically Harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled drug delivery systems. Chem Rev. 2019;119:6459–506.
Li Y, Cai Z, Ma W, Bai L, Luo E, Lin Y. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of Curcumin and alleviation of diabetic osteoporosis. Bone Res. 2024;12:14.
Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang K. Spatially controlled DNA frameworks for sensitive detection and specific isolation of tumor cells. Angew Chem Int Ed Engl. 2024;63:e202411382.
Sellner S, Kocabey S, Nekolla K, Krombach F, Liedl T, Rehberg M. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials. 2015;53:453–63.
Zhuang X, Ma X, Xue X, Jiang Q, Song L, Dai L, Zhang C, Jin S, Yang K, Ding B, et al. A Photosensitizer-Loaded DNA Origami nanosystem for photodynamic therapy. ACS Nano. 2016;10:3486–95.
Pan Q, Nie C, Hu Y, Yi J, Liu C, Zhang J, He M, He M, Chen T, Chu X. Aptamer-Functionalized DNA Origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in Drug-Resistant Cancer cells. ACS Appl Mater Interfaces. 2020;12:400–9.
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46:4218–44.
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:339.
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: from cellular uptake to Mechanobiological responses. Int J Mol Sci. 2021;22:9587.
Abdulrahman A, Ghanem A. Recent advances in chromatographic purification of plasmid DNA for gene therapy and DNA vaccines: A review. Anal Chim Acta. 2018;1025:41–57.
Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release. 2007;118:262–70.
Togashi R, Tanaka H, Nakamura S, Yokota H, Tange K, Nakai Y, Yoshioka H, Harashima H, Akita H. A hepatic pDNA delivery system based on an intracellular environment sensitive vitamin E-scaffold lipid-like material with the aid of an anti-inflammatory drug. J Control Release. 2018;279:262–70.
Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20:41.
Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L, et al. Rapid surface display of mRNA antigens by Bacteria-Derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater. 2022;34:e2109984.
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto VP, Lächelt U, et al. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. Exploration. 2024;4:20210146.
Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov. 2024;23:709–22.
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA vaccine against SARS-CoV-2 – Preliminary report. N Engl J Med. 2020;383:1920–31.
Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based Cancer vaccines: advancements and prospects. Nano Lett. 2024;24:12711–21.
Li Z, Zhang XQ, Ho W, Li F, Gao M, Bai X, Xu X. Enzyme-Catalyzed One-Step synthesis of ionizable cationic lipids for lipid Nanoparticle-Based mRNA COVID-19 vaccines. ACS Nano. 2022;16:18936–50.
Li B, Luo X, Deng B, Wang J, McComb DW, Shi Y, Gaensler KM, Tan X, Dunn AL, Kerlin BA, Dong Y. An orthogonal array optimization of Lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015;15:8099–107.
Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol Pharm. 2020;17:1996–2005.
Rizvi F, Everton E, Smith AR, Liu H, Osota E, Beattie M, Tam Y, Pardi N, Weissman D, Gouon-Evans V. Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nat Commun. 2021;12:613.
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.
Philipp J, Dabkowska A, Reiser A, Frank K, Krzyszton R, Brummer C, Nickel B, Blanchet CE, Sudarsan A, Ibrahim M, et al. pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proc Natl Acad Sci U S A. 2023;120:e2310491120.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.
LoPresti ST, Arral ML, Chaudhary N, Whitehead KA. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J Control Release. 2022;345:819–31.
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.
Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP 3rd, Hou S, Esposito AA, Ketova T, Welsher K, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun. 2020;11:983.
Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska K, Huayamares SG, Hua X, Han K, Loughrey D, et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc Natl Acad Sci U S A. 2024;121:e2307801120.
Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.
Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12:6777.
Li B, Manan RS, Liang SQ, Gordon A, Jiang A, Varley A, Gao G, Langer R, Xue W, Anderson D. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol. 2023;41:1410–5.
Bannigan P, Aldeghi M, Bao Z, Hase F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev. 2021;175:113806.
Wang W, Chen K, Jiang T, Wu Y, Wu Z, Ying H, Yu H, Lu J, Lin J, Ouyang D. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat Commun. 2024;15:10804.
Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F, Golubovic A, Zhou M, Wang KC, Varley A, et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat Commun. 2024;15:6305.
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361:360–5.
Liu K, Sun X, Jia L, Ma J, Xing H, Wu J, Gao H, Sun Y, Boulnois F, Fan J. Chemi-net: a molecular graph convolutional network for accurate drug property prediction. Int J Mol Sci. 2019;20:3389.
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–9.
Gu Y, Chen J, Wang Z, Liu C, Wang T, Kim CJ, Durikova H, Fernandes S, Johnson DN, De Rose R, et al. mRNA delivery enabled by metal-organic nanoparticles. Nat Commun. 2024;15:9664.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.
Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B. 2024;14:4665–82.
Zhang L, Bai J, Shen A, Zhao J, Su Z, Wang M, Dong M, Xu ZP. Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy. Biomaterials. 2025;317:123085.
Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P, Lu E, Brosnan CA, Xu ZP, Mitter N. Foliar application of clay-delivered RNA interference for whitefly control. Nat Plants. 2022;8:535–48.
Yong J, Wu M, Zhang R, Bi S, Mann CWG, Mitter N, Carroll BJ, Xu ZP. Clay nanoparticles efficiently deliver small interfering RNA to intact plant leaf cells. Plant Physiol. 2022;190:2187–202.
Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, Brosnan CA, Mitter N, Carroll BJ, Xu ZP. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants. Nat Plants. 2025;11:131–44.
Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska AB, Santaniello A, Piaggesi A, et al. Exogenous MiRNAs induce post-transcriptional gene Silencing in plants. Nat Plants. 2021;7:1379–88.
Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release. 2022;342:228–40.
Haussecker D, Kay MA. RNA interference. Drugging RNAi. Science. 2015;347:1069–70.
Wang Q, Tian Y, Liu L, Chen C, Zhang W, Wang L, Guo Q, Ding L, Fu H, Song H, et al. Precise targeting therapy of orthotopic gastric carcinoma by SiRNA and chemotherapeutic drug codelivered in pH-Sensitive nano platform. Adv Healthc Mater. 2021;10:e2100966.
Tang X, Sheng Q, Xu C, Li M, Rao J, Wang X, Long Y, Tao Y, He X, Zhang Z, He Q. pH/ATP cascade-responsive nano-courier with efficient tumor targeting and SiRNA unloading for photothermal-immunotherapy. Nano Today. 2021;37:101083.
Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y, Liu S, Zhao G, et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat Nanotechnol. 2019;14:388–97.
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of SiRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18:193–204.
Li M, Sun J, Zhang W, Zhao Y, Zhang S, Zhang S. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym. 2021;251:117103.
Mi Y, Mu C, Wolfram J, Deng Z, Hu TY, Liu X, Blanco E, Shen H, Ferrari M. A micro/nano composite for combination treatment of melanoma lung metastasis. Adv Healthc Mater. 2016;5:936–46.
Zhao Z, Li Y, Liu H, Jain A, Patel PV, Cheng K. Co-delivery of IKBKE SiRNA and Cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci Adv. 2020;6:eabb0616.
Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-Based strategies for SiRNA brain delivery for disease therapy. Trends Biotechnol. 2018;36:562–75.
Zhang L, Wu T, Shan Y, Li G, Ni X, Chen X, Hu X, Lin L, Li Y, Guan Y, et al. Therapeutic reversal of Huntington’s disease by in vivo self-assembled SiRNAs. Brain. 2021;144:3421–35.
Zhang L, Hou S, Movahedi F, Li Z, Li L, Hu J, Jia Y, Huang Y, Zhu J, Sun X, et al. Amyloid-β/Tau burden and neuroinflammation dual-targeted nanomedicines synergistically restore memory and recognition of Alzheimer’s disease mice. Nano Today. 2023;49:101788.
Zhao Y, Qin J, Yu D, Liu Y, Song D, Tian K, Chen H, Ye Q, Wang X, Xu T, et al. Polymer-locking fusogenic liposomes for glioblastoma-targeted SiRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2024;19:1869–79.
Ahn I, Kang CS, Han J. Where should SiRNAs go: applicable organs for SiRNA drugs. Exp Mol Med. 2023;55:1283–92.
Zhang Y, Ma H, Li L, Sun C, Yu C, Wang L, Xu D, Song X, Yu R. Dual-Targeted novel Temozolomide nanocapsules encapsulating siPKM2 inhibit aerobic Glycolysis to sensitize glioblastoma to chemotherapy. Adv Mater. 2024;36:e2400502.
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular vesicle (EVs) associated Non-Coding RNAs in lung Cancer and therapeutics. Int J Mol Sci. 2022;23.
Moro M, Di Paolo D, Milione M, Centonze G, Bornaghi V, Borzi C, Gandellini P, Perri P, Pastorino U, Ponzoni M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release. 2019;308:44–56.
Peng Y, Zhu X, Qiu L. Electroneutral composite polymersomes self-assembled by amphiphilic polyphosphazenes for effective miR-200c in vivo delivery to inhibit drug resistant lung cancer. Biomaterials. 2016;106:1–12.
Perepelyuk M, Maher C, Lakshmikuttyamma A, Shoyele SA. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomed. 2016;11:3533–44.
Mendonca MCP, Kont A, Aburto MR, Cryan JF, O’Driscoll CM. Advances in the design of (Nano)Formulations for delivery of antisense oligonucleotides and small interfering RNA: focus on the central nervous system. Mol Pharm. 2021;18:1491–506.
Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20:427–53.
Cheng X, Yu D, Cheng G, Yung BC, Liu Y, Li H, Kang C, Fang X, Tian S, Zhou X, et al. T7 Peptide-Conjugated lipid nanoparticles for dual modulation of Bcl-2 and Akt-1 in lung and cervical carcinomas. Mol Pharm. 2018;15:4722–32.
Lee SJ, Lim JH, Choi YH, Kim WJ, Moon SK. Interleukin-28A triggers wound healing migration of bladder cancer cells via NF-κB-mediated MMP-9 expression inducing the MAPK pathway. Cell Signal. 2012;24:1734–42.
Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting LncRNA MALAT1 inhibits Cancer metastasis. ACS Appl Mater Interfaces. 2019;11:37–42.
Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene Silencing. Mitochondrion. 2019;49:178–88.
Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, Duan X, Zhang F, Xie M, Le H, et al. Nanomedicine directs neuronal differentiation of neural stem cells via Silencing long noncoding RNA for stroke therapy. Nano Lett. 2021;21:806–15.
Chen L, Li G, Wang X, Li J, Zhang Y. Spherical nucleic acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and antisense oligonucleotide. ACS Nano. 2021;15:11929–39.
Agarwal C. A review: CRISPR/Cas12-mediated genome editing in fungal cells: advancements, mechanisms, and future directions in plant-fungal pathology. ScienceOpen Res. 2023.
Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol. 2011;14:321–7.
Jia Z, Zhang Y, Zhang C, Wei X, Zhang M. Biosensing intestinal alkaline phosphatase by pregnancy test strips based on target-triggered CRISPR-Cas12a activity to monitor intestinal inflammation. Anal Chem. 2023;95:14111–8.
Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39:717–26.
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.
Hughes TS, Langer SJ, Virtanen SI, Chavez RA, Watkins LR, Milligan ED, Leinwand LA. Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression. J Gene Med. 2009;11:782–90.
Zhang L, Wang P, Feng Q, Wang N, Chen Z, Huang Y, Zheng W, Jiang X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017;9:e441–441.
Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, Du XJ, Yang XZ, Gu Z, Wang J. Macrophage-Specific in vivo gene editing using cationic Lipid-Assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.
Luo YL, Liang LF, Gan YJ, Liu J, Zhang Y, Fan YN, Zhao G, Czarna A, Lu ZD, Du XJ, et al. An All-in-One nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance. ACS Appl Mater Interfaces. 2020;12:48259–71.
Yan X, Pan Q, Xin H, Chen Y, Ping Y. Genome-editing prodrug: targeted delivery and conditional stabilization of CRISPR-Cas9 for precision therapy of inflammatory disease. Sci Adv. 2021;7:eabj0624.
Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, et al. Thermo-triggered release of CRISPR-Cas9 system by Lipid-Encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl. 2018;57:1491–6.
Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng. 2019;3:126–36.
Li J, Hao Y, Pan H, Zhang Y, Cheng G, Liu B, Chang J, Wang H. CRISPR-dcas9 optogenetic nanosystem for the blue Light-Mediated treatment of neovascular lesions. ACS Appl Bio Mater. 2021;4:2502–13.
Li L, Yang Z, Zhu S, He L, Fan W, Tang W, Zou J, Shen Z, Zhang M, Tang L, et al. A rationally designed semiconducting polymer brush for NIR-II Imaging-Guided Light-Triggered remote control of CRISPR/Cas9 genome editing. Adv Mater. 2019;31:e1901187.
Tang H, Xu X, Chen Y, Xin H, Wan T, Li B, Pan H, Li D, Ping Y. Reprogramming the tumor microenvironment through Second-Near-Infrared-Window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced Cancer immunotherapy. Adv Mater. 2021;33:e2006003.
Alsaiari SK, Eshaghi B, Du B, Kanelli M, Li G, Wu X, Zhang L, Chaddah M, Lau A, Yang X, et al. CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells. Nat Rev Mater. 2024;10:44–61.
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.
Zhang X, Li B, Luo X, Zhao W, Jiang J, Zhang C, Gao M, Chen X, Dong Y. Biodegradable Amino-Ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9:25481–7.
Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20:701–10.
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15:313–20.
Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, Xu Q. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci U S A. 2021;118.
Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. CES1-Triggered Liver-Specific cargo release of CRISPR/Cas9 elements by cationic triadic copolymeric nanoparticles targeting gene editing of PCSK9 for hyperlipidemia amelioration. Adv Sci (Weinh). 2023;10:e2300502.
Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv. 2020;6.
Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22:2227–35.
Gautam M, Jozic A, Su GL, Herrera-Barrera M, Curtis A, Arrizabalaga S, Tschetter W, Ryals RC, Sahay G. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat Commun. 2023;14:6468.
Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.
Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ. Non-Viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle Co-Delivery of Cas9 mRNA and SgRNA. Angewandte Chemie (International Ed English). 2017;56:1059–63.
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11:3232.
Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc Chem Res. 2019;52:665–75.
Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.
Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, Li M, Khashab NM. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140:143–6.
Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, Huang F, Wu C, Ping Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J Control Release. 2020;322:236–47.
Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.
Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5:eaaw8922.
Deng S, Li X, Liu S, Chen J, Li M, Chew SY, Leong KW, Cheng D. Codelivery of CRISPR-Cas9 and Chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv. 2020;6:eabb4005.
Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. 2020;38:44–9.
Lee J, Kang YK, Oh E, Jeong J, Im SH, Kim DK, Lee H, Kim S-G, Jung K, Chung HJ. Nano-assembly of a chemically tailored Cas9 ribonucleoprotein for in vivo gene editing and Cancer immunotherapy. Chem Mater. 2022;34:547–61.
Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, Wang H, Gong J, Palumbo CD, Ashton JM, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Sci Adv. 2021;7:eabg3217.
Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7:eabe2888.
Liu Q, Wang C, Zheng Y, Zhao Y, Wang Y, Hao J, Zhao X, Yi K, Shi L, Kang C, Liu Y. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials. 2020;258:120275.
Pan Y, Yang J, Luan X, Liu X, Li X, Yang J, Huang T, Sun L, Wang Y, Lin Y, Song Y. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Sci Adv. 2019;5:eaav7199.
Chen X, Chen Y, Xin H, Wan T, Ping Y. Near-infrared optogenetic engineering of photothermal NanoCRISPR for programmable genome editing. Proc Natl Acad Sci U S A. 2020;117:2395–405.
Peng LH, Wang MZ, Chu Y, Zhang L, Niu J, Shao HT, Yuan TJ, Jiang ZH, Gao JQ, Ning XH. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Sci Adv. 2020;6:eaba2735.
Wang M, Yan G, Xiao Q, Zhou N, Chen H-R, Xia W, Peng L. Iontophoresis-driven microneedle arrays delivering Transgenic outer membrane vesicles in program that stimulates transcutaneous vaccination for Cancer immunotherapy. Small Sci. 2023;3.
Zhao M, Cheng X, Shao P, Dong Y, Wu Y, Xiao L, Cui Z, Sun X, Gao C, Chen J, et al. Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy. Nat Commun. 2024;15:950.
Westin J, Sehn LH. CAR T cells as a second-line therapy for large B-cell lymphoma: a paradigm shift? Blood J Am Soc Hematol. 2022;139:2737–46.
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan C-x, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41:119.
Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 2022;29:1080–96.
Bucher P, Feucht J. LINKing signaling domains to enhance CAR T cells. Nat Cancer. 2023;4:447–9.
Hu Y, Zhou Y, Zhang M, Zhao H, Wei G, Ge W, Cui Q, Mu Q, Chen G, Han L, et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 2022;32:995–1007.
Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12:813–20.
Zhang X, Su K, Wu S, Lin L, He S, Yan X, Shi L, Liu S. One-Component cationic lipids for systemic mRNA delivery to Splenic T cells. Angew Chem Int Ed Engl. 2024;63:e202405444.
Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene delivery to human T cells. J Control Release. 2018;282:140–7.
Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid Nanoparticle-Mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20:1578–89.
Billingsley MM, Hamilton AG, Mai D, Patel SK, Swingle KL, Sheppard NC, June CH, Mitchell MJ. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 2022;22:533–42.
Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in Circulating T cells in vivo. Nat Commun. 2020;11:6080.
McEvoy E, Han YL, Guo M, Shenoy VB. Gap junctions amplify Spatial variations in cell volume in proliferating tumor spheroids. Nat Commun. 2020;11:6148.
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.
Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36:707–16.
Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 2018;78:3718–30.
Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and more: innovations in the fourth-generation CAR-T development. Mol Ther. 2023;31:3146–62.
Uslu U, Castelli S, June CH. CAR T cell combination therapies to treat cancer. Cancer Cell. 2024;42:1319–25.
Zhu T, Xiao Y, Chen Z, Ding H, Chen S, Jiang G, Huang X. Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung. Nat Commun. 2025;16:262.
Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev. 2023;192:114624.
Chen Z, Pan H, Luo Y, Yin T, Zhang B, Liao J, Wang M, Tang X, Huang G, Deng G, et al. Nanoengineered CAR-T biohybrids for solid tumor immunotherapy with microenvironment Photothermal-Remodeling strategy. Small. 2021;17:e2007494.
Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, et al. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.
Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv Drug Deliv Rev. 2023;200:114990.
Namiot ED, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Nanoparticles in clinical trials: analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int J Mol Sci. 2023;24.
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of Cancer nanomedicine: success, frustration, and hope. Cancers (Basel). 2019;11.
A Phase 1, Open-Label, multicenter study to assess the safety and tolerability of mRNA-5671/V941 as a monotherapy and in combination with pembrolizumab in participants with KRAS mutant advanced or metastatic Non-Small cell lung cancer, colorectal Cancer or pancreatic adenocarcinoma. (ModernaTx I ed.; 2019).
Single-Arm A. Open-Label, exploratory study to evaluate the safety of RNA tumor vaccine injection alone/in combination with PD-1 inhibitor in the treatment of advanced solid tumors with KRAS mutation. 2022.
A Phase 1, Open-Label, multicenter, dose escalation study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral injection alone and in combination with immune checkpoint Blockade. (AstraZeneca ed.; 2018).
Phase A, Ib Open-Label I. Multi-Center, Dose-Escalation study to investigate the safety, pharmacokinetics and preliminary efficacy of intravenous NBF 006 in patients with Non-Small cell lung, pancreatic, or colorectal Cancer followed by a dose expansion study in patients with KRAS-Mutated Non-Small cell lung Cancer. 2019.
Prospective A. Open-label, single center, dose finding phase I-study with Atu027 (an SiRNA Formulation) in subjects with advanced solid Cancer. 2009.
EphA2 Gene Targeting Using Neutral Liposomal Small Interfering RNA Delivery. A Phase I Clinical Trial. (Gateway for Cancer R, Institutional Funding for Federally Supported Clinical T, National Cancer I eds.); 2012.
Multicenter Phase A. I Study of MRX34, MicroRNA miR-RX34 liposomal injection. Cancer Prevention Research Institute of T ed.; 2013.
Phase A. I, Dose-Escalating study of the safety of intravenous CALAA-01 in adults with solid tumors refractory to Standard-of-Care therapies. 2008.
Phase I. Study of mesenchymal stromal Cells-Derived exosomes with KrasG12D SiRNA for metastatic pancreas Cancer patients harboring KrasG12D mutation. 2018.
Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics 2022, 14.
Das RP, Gandhi VV, Singh BG, Kunwar A. Passive and active drug targeting: role of nanocarriers in rational design of anticancer formulations. Curr Pharm Des. 2019;25:3034–56.
Broncy L, Paterlini-Bréchot P. Clinical impact of Circulating tumor cells in patients with localized prostate cancer. Cells. 2019;8:676.
Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. Sensors. 2009;9:1033–53.
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol. 2021;910:174464.
Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang X-J. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale. 2021;13:7108–18.
Lv K, Yu Z, Wang J, Li N, Wang A, Xue T, Wang Q, Shi Y, Han L, Qin W, et al. Discovery of Ketal-Ester ionizable lipid nanoparticle with reduced hepatotoxicity, enhanced spleen tropism for mRNA vaccine delivery. Adv Sci (Weinh). 2024;11:e2404684.
Patil SM, Daram A, Kunda NK. 3D spheroid model reveals enhanced efficacy of mannose-decorated nanoparticles for TB treatment. Nanomed (Lond). 2025;20:777–89.
Ou BS, Baillet J, Picece V, Gale EC, Powell AE, Saouaf OM, Yan J, Nejatfard A, Lopez Hernandez H, Appel EA. Nanoparticle-Conjugated Toll-Like receptor 9 agonists improve the potency, durability, and breadth of COVID-19 vaccines. ACS Nano. 2024;18:3214–33.
Lee E, Jeon H, Lee M, Ryu J, Kang C, Kim S, Jung J, Kwon Y. Molecular origin of AuNPs-induced cytotoxicity and mechanistic study. Sci Rep. 2019;9:2494.
Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding K, Jiang HT, Gong YK. Smart MSN-Drug-Delivery system for tumor cell targeting and tumor microenvironment release. ACS Appl Mater Interfaces. 2021;13:42522–32.
Wong TY, Yan N, Kwan KKL, Pan Y, Liu J, Xiao Y, Wu L, Lam H. Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticles. J Hazard Mater. 2023;445:130599.
Sharma A, Sah N, Kannan S, Kannan RM. Targeted drug delivery for maternal and perinatal health: challenges and opportunities. Adv Drug Deliv Rev. 2021;177:113950.
Wang J, Huang H, Jia M, Chen S, Wang F, He G, Wu C, Lou K, Zheng X, Zhang H, et al. Autologous platelet delivery of SiRNAs by autologous plasma protein self-assembled nanoparticles for the treatment of acute kidney injury. J Nanobiotechnol. 2025;23:256.
Yong H, Tian Y, Li Z, Wang C, Zhou D, Liu J, Huang X, Li J. Highly branched Poly(β-amino ester)s for efficient mRNA delivery and nebulization treatment of silicosis. Adv Mater 2025:e2414991.
Jakic K, Selc M, Razga F, Nemethova V, Mazancova P, Havel F, Sramek M, Zarska M, Proska J, Masanova V, et al. Long-Term accumulation, biological effects and toxicity of BSA-Coated gold nanoparticles in the mouse liver, spleen, and kidneys. Int J Nanomed. 2024;19:4103–20.
Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, Rosu-Myles M, He R, Li X. Subcutaneous immunization with Recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccin Immunother. 2012;8:425–30.
Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5:487–95.
Yu K, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, et al. Deep learning enhanced near Infrared-II imaging and Image-Guided small interfering ribonucleic acid therapy of ischemic stroke. ACS Nano. 2025;19:10323–36.
Guo S, Agarwal T, Song S, Sarkar K, Zhang LG. Development of novel multi-responsive 4D printed smart nanocomposites with polypyrrole coated iron oxides for remote and adaptive transformation. Mater Horiz 2025.
Störtz F, Minary P. CrisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 2021;49:D855–61.
Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. 2019;569:433–7.
Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive smart Nanoparticles-Based CRISPR-Cas delivery for therapeutic genome editing. Int J Mol Sci. 2021;22.
You S, Zuo L, Li W. Optimizing the time of doxil injection to increase the drug retention in transplanted murine mammary tumors. Int J Nanomed. 2010;5:221–9.
Baeza A. Tumor targeted nanocarriers for immunotherapy. Molecules 2020, 25.
Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, et al. Mesoporous silica nanoparticles as pH-Responsive carrier for the immune-Activating drug resiquimod enhance the local immune response in mice. ACS Nano. 2021;15:4450–66.
Khan SN, Han P, Chaudhury R, Bickerton S, Lee JS, Calderon B, Pellowe A, Gonzalez A, Fahmy T. Direct comparison of B cell surface receptors as therapeutic targets for nanoparticle delivery of BTK inhibitors. Mol Pharm. 2021;18:850–61.
Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.
Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated Core-Shell hybrid nanovehicles for targeted and pH-Triggered delivery of arsenic trioxide into glioma. Mol Pharm. 2019;16:786–97.
Yu X, Yu C, Wu X, Cui Y, Liu X, Jin Y, Li Y, Wang L. Validation of an HPLC-CAD method for determination of lipid content in LNP-Encapsulated COVID-19 mRNA vaccines. Vaccines (Basel). 2023;11.
Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials. 2025;317:123047.
Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, Gong S. pH-Responsive polymer nanoparticles for efficient delivery of Cas9 ribonucleoprotein with or without donor DNA. Adv Mater. 2022;34:2110618.
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.
Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.
Tang J, Zhang L, Gao H, Liu Y, Zhang Q, Ran R, Zhang Z, He Q. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Deliv. 2016;23:1130–43.
Patil V, Patel A. Biodegradable nanoparticles: A recent approach and applications. Curr Drug Targets. 2020;21:1722–32.