A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy


  • Hiller, J. G. et al. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reya, T. et al. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbato, L. et al. Cancer stem cells and targeting strategies. Cells 8, 926 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prager, B. C. et al. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24, 41–53 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, X. et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct. Target Ther. 9, 170 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilboa, E. The promise of cancer vaccines. Nat. Rev. Cancer 4, 401–411 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiu, R. et al. Cancer stem cell immunology and immunotherapy: harnessing the immune system against cancer’s source. Prog. Mol. Biol. Transl. Sci. 164, 119–188 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, N. et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 72, 1853–1864 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res. 76, 4661–4672 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, O. et al. Melanoma vaccines: developments over the past 10 years. Expert Rev. Vaccines 10, 853–873 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quaglino, E., Conti, L. & Cavallo, F. Breast cancer stem cell antigens as targets for immunotherapy. Semin. Immunol. 47, 101386 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassani, N. A. et al. Cancer immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano Lett. 20, 7783–7792 (2020).

    Article 

    Google Scholar
     

  • Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, I. A. et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71, 3991–4001 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res. 28, 336–358 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81, 5919–5934 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lizee, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).

  • Samie, M. & Cresswell, P. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat. Immunol. 16, 729–736 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, L. H. Cationic lipids-mediated dual-targeting of both dendritic cells and tumor cells for potent cancer immunotherapy. Adv. Funct. Mater. 33, 2306752 (2023).

    Article 

    Google Scholar
     

  • Hu, M. et al. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano 15, 3123–3138 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrilovich, D. I., Ostrand, R. S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z., Todd, L. & Huang, L. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun. 14, 510 (2023).

    Article 

    Google Scholar
     

  • Lakins, M. A., Ghorani, E. & Munir, H. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. et al. T‐cell‐derived nanovesicles for cancer immunotherapy. Adv. Mater. 33, 2101110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug. Discov. 14, 781–803 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci. Transl. Med. 13, 601 (2021).

    Article 

    Google Scholar
     

  • von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article 

    Google Scholar
     

  • Clatworthy, M. R. et al. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat. Med. 20, 1458–1463 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat. Commun. 14, 265 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Q. et al. m6A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv. Mater. 35, e2204910 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394–1402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zehner, M. et al. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42, 850–863 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McClements, L. et al. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin. Cancer Res. 19, 3881–3893 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, S. et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. C. et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat. Commun. 7, 11702 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat. Commun. 14, 6748 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, Y. et al. T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. Nat. Nanotechnol. 16, 1271–1280 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, N. et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat. Nanotechnol. 19, 345–353 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsadek, B. & Kratz, F. Impact of albumin on drug delivery-new applications on the horizon. J. Control. Release 157, 4–28 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci. Transl. Med. 14, eabl3649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Sci. Immunol. 6, eabf4432 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giampazolias, E. et al. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 184, 4016–4031. e22 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roney, K. Bone marrow-derived dendritic cells. Methods Mol. Biol. 1960, 57–62 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assouvie, A., Daley-Bauer, L. P. & Rousselet, G. Growing murine bone marrow-derived macrophages. Methods Mol. Biol. 1784, 29–33 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, Y. et al. Selection of DNA aptamers against DC-SIGN protein. Mol. Cell. Biochem. 306, 71–77 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, M. & Shapiro, L. H. In vitro Ag cross-presentation and in vivo Ag cross-presentation by dendritic cells in the mouse. Bio-Protocol 2, e305 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • By admin

    Deixe um comentário

    O seu endereço de email não será publicado. Campos obrigatórios marcados com *